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Outline

1) Reminders about the classical dimer model
2) Near-critical weights

I Definition, non Gaussian scaling limit

I Equivalent representation: Temperley’s bijection

I New results: convergence to massive SLE, universality, conformal
covariance,

I Along the way: scaling limit of LERW with drift

3) An exact discrete Girsanov theorem on the triangular lattice
4) Some open questions: Sine-Gordon, Ising etc?

2 / 35



1) The dimer model
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The dimer model

Let G be a finite, planar, bipartite graph.

A dimer cover (or perfect matching): a set of edges (=dimers), such that
each vertex is incident to exactly one dimer.

The dimer model with edge weights we:

P(m) =
1
Z

∏
e∈m

we.

Typically we ≡ 1 (→ critical!)
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The dimer model as a random surface

Honeycomb lattice: lozenge tiling or a stack of cubes

©Kenyon

Height function

Introduced by Thurston. Hence view as a random surface.

Note: depends on the choice of a reference frame.
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Large scale behaviour?

Kenyon

Kenyon–Okounkov–
Sheffield 2006

The effect of boundary conditions is, however, not entirely trivial and will be
discussed in more detail in a subsequent paper.

P. W. Kasteleyn, 1961
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Temperleyan boundary conditions

Divide the vertices into black and white.
Divide further into B0 = •,B1 = ×
(and W0,W1).

Temperleyan: all corners are B1 = ×, and one corner is removed.
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Scaling limit of height function
Theorem (Kenyon ’99)

Let D ⊂ C bounded domain, Dδ = D ∩ δZ2 with Temperleyan boundary
conditions. Let hδ be the associated height function. Then,

hδ − E(hδ)→ 1√
π

hGFF
D as δ → 0,

in distribution.

Main ingredients of the proof:

I Kasteleyn theory (exact solvability): dimer correlations are given by
determinants of inverse Kasteleyn matrix,

I Asymptotic computation of inverse Kasteleyn matrix (discrete
holomorphic + boundary conditions)

I Computation of moments
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2) Near-critical dimer model
Makarov–Smirnov (2009):

The key property of SLE is its conformal invariance, which is expected in 2D
lattice models only at criticality, and the question naturally arises: Can SLE
success be replicated for off-critical models? In most off-critical cases to
obtain a non-trivial scaling limit one has to adjust some parameter [...],
sending it at an appropriate speed to the critical value. Such limits lead to
massive field theories...,
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Biperiodic setup

Choose si = 1 + ciδ, where δ = mesh size. Gasesous/Liquid boundary...
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Massive Laplacian
Let K = Kasteleyn matrix, D = KK∗. Then D is (essentially) a massive
Laplacian:

D(b, b) = −
4∑

i=1

s2
i

but ∑
b′

D(b, b′) = 2s2s4 + 2s1s3 < |D(b, b)|

by AM-GM.
Describes a massive walk (fixed killing probability).

Natural guess:

Scaling limit = Massive GFF?

E[h(x)h(y)] =

∫ ∞
0

e−m2tpt(x, y)dt
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Negative answer

Unfortunately this guess is wrong.

Theorem (Chhita, 2012)
Limiting moments of height function can be computed; no Wick rule so non
Gaussian !
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New results for near-critical dimers

With Levi Haunschmid (2022) we prove:

I Exact connection with Makarov and Smirnov’s massive SLE2 (and with
massive Laplacian).

I Existence and universality of scaling limit of height function in
Temperleyan domains

I Conformal covariance of scaling limit
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Temperley’s bijection
Dimers on Z2 ∩ D↔ pairs of dual spanning trees on B0,B1 lattices.
Temperleyan boundary conditions: wired/free tree.

B.–Laslier–Ray point of view

Often easier to work with Temperleyan trees.
Keeps all the information, even in scaling limit (“Imaginary Geometry”).
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Temperley’s bijection 1

Dimers on Z2 ∩ D, Temperleyan boundary conditions.
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Temperley’s bijection 2

Orient dimers black→ white (just B0 = • for now)
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Temperley’s bijection 3

Double each oriented dimer to get spanning tree on B0 lattice (wired
boundary conditions).
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Temperley’s bijection 4

On B1 lattice, get dual (free boundary conditions) spanning tree.
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Remarks

I The bijection is local.

I Temperleyan boundary conditions for dimer⇒ wired/free boundary
conditions for trees.

I If we ≡ 1 then (T , T †) uniform.

I More generally, in biperiodic setup,

P(T = t) ∝
∏
e∈t

we/2.

Owing to biperiodic structure, (directed) edges of T come with weight
s1, . . . , s4.
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Extends to hexagonal lattice
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Scaling limit of Temperleyan tree

Consider off-critical dimer model on square with si = 1 + ciδ.
Let T = Temperleyan B0-tree.

P(T = t) ∝
∏
v∈B0

sv(t)

where sv(t) ∈ {s1, . . . , s4} depending on the direction of the unique
outgoing edge from v in t.

Wilson’s algorithm

The branch connecting z to ∂D is LERW for the random walk on B0 with
jump probabilities (si)

4
i=1.

The random walk itself converges to BM with drift α,

α =
1
4

(c1 + c2i + c3i2 + c4i3)

But what is the scaling limit of LERW?
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Connection with massive SLE2

Suppose
c1 + c3 = c2 + c4 = 0

Theorem 1 (B.–Haunschmid)
Let z ∈ Ω. Let γδ = path in Temperleyan tree to ∂Ω, Yδ = endpoint. Then
conditionally on Yδ = yδ ,

γδ → mSLE2,

where mass m = ‖α‖.
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Massive SLE2

Consider random walk killed with probability m2δ2 at each step.

Condition to leave Ω without dying. What is scaling limit of LERW?

Theorem (Makarov–Smirnov (2009), Chelkak-Wan (2019))
massive LERW converges to “massive SLE2”

Described by Loewner’s equation with driving function:

dξt =
√

2dBt + 2λtdt;

with

λt =
∂

∂w
log

P(m)
Ωt

(z,w)

P(0)
Ωt

(z,w)

∣∣∣∣∣
w=γ(t)

[m = 0: Lawler–Schramm–Werner 2002]
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Additional remarks

I Unconditional convergence also holds, then global Radon–Nikodym
derivative:

dP
d mSLE2

(γ) = exp(2〈Y − z,∆〉)

where Y = exit point.
I Exact same statement for hexagonal lattice ai = 1 + ciδ,

α =
1
3

(c1 + c2τ + c3τ
2).
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Convergence of height function

Corollary (B.–Haunschmid)

The Temperleyan tree Tδ has a scaling limit (in Schramm topology); the
limit law depends only on ∆ and so is the same for hexagonal and square
lattice cases.

Proof: Wilson’s algorithm.

Corollary (B.–Haunschmid)

The height function of near-critical dimers in Temperleyan domains
converge to the same scaling limit.

Proof: “imaginary geometry approach” by B.–Laslier–Ray (2020, 2019+).
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Conformal covariance
Conformal covariance:
Image under conformal map preserved, up to power β of derivative of
conformal map.

(β = 0 means conformal invariance.)

This requires allowing for general vector field α : Ω→ R2 ≡ C.

Generalised near-critical dimers
At each point z ∈ B0, assign weights si = 1 + ciδ, with
c1 + c3 = 0, c2 + c4 = 0,

1
4

(c1 + c2i + c3i2 + c4i3) = α

Any drift vector α is uniquely encoded in this way.

The random walk with these weights converge in the scaling limit not to a
Brownian motion, but to the solution of the SDE

dXt = dBt + α(Xt)dt.
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LERW with variable drift

Consider a smooth vector field α : Ω̄→ R2. Does the LERW have a scaling
limit?

Assumptions

Suppose we have sequence of planar graphs Gδ , and:
I α = ∇φ of gradient type.
I Two laws Pδ , Qδ such that:

– under Pδ , RW converge to BM;
– under Qδ , RW converges to SDE.

I Uniform absolute continuity: i.e., dQδ/dPδ is Uniformly Integrable.

Holds on square lattice and triangular lattices, and conformal deformations
thereof.
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LERW with variable drift

Theorem 3. (B.–Haunschmid)
The loop-erased random walk with local drift α has a scaling limit.

Described by Loewner’s equation with driving function in D:

dξt =
√

2dBt + 2λtdt;

with

λt =
∂

∂w
log

P(α)
Ωt

(z,w)

P(0)
Ωt

(z,w)

∣∣∣∣∣
w=γ(t)

where Ωt = D \ γ[0, t],
P(α)

Ω (z,w) = Poisson kernel in Ω for the SDE.

The existence of this Poisson kernel is not trivial. (Smooth Ω: Ben Arous,
Kusuoka and Stroock 1984).

cf. Chelkak–Wan 2019.
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Corollary

Let α = ∇φ be a smooth vector field in Ω̄.
Associate near-critical weights on square/hexagonal lattices.
Then height function has a scaling limit, call it h(α);Ω. Depends just on α.

Remark: not sure what is analogue on more general lattices.

Theorem 4. (B.–Haunschmid)
Let F : Ω̃→ Ω be a conformal map (with bounded derivative). In law,

h(α);Ω ◦ φ = h(α̃);Ω̃

where at a point w ∈ Ω̃,

α̃(w) = F′(w) · α(F(w)).
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On the imaginary geometry approach to dimers

A powerful approach to dimer models:

I Temperleyan & more, even for balanced
random environments (B.–Laslier–Ray, 2020)

I Riemann Surfaces (B.–Laslier–Ray, 2019, 2022)

I Piecewise Temperleyan
→ multiple SLE8 (B.–Liu, 2023)
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Discrete Girsanov on triangular lattice T.

Directed triangular lattice T
if τ = e2iπ/3,

Q(x, x + τ k−1) =
eαk

a
.

ai = eδαi; a =
3∑
i=1

ai.

Define β(v) > 0 by

exp(−β(v)2) = (a/3)−3
3∏

k=1

eαk ,

well defined by AM-GM.
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Discrete Girsanov on triangular lattice T.
Define a vector α(v) at every vertex v in the graph,

α = α1 + α2τ + α3τ
2,

Lemma
Fix any lattice path γ = (x0, . . . , xn) on T.

Q
P

(γ) = exp(Mn − 1
2 Vn)

where Mn = 2
3

∑n−1
s=0 〈α(xs), dxs〉; and Vn = 2

3

∑n−1
s=0 β(xs)

2.

Discrete analogue of

dQ
dP

= exp

(∫ t

0
∆(Xs) · dXs −

1
2

∫ t

0
‖∆(Xs)‖2ds

)
.

Corollary (constant drift case)

Qx(·|xn = y) is the same as a massive walk conditioned to survive up to time
n and Xn = y.
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Proof.
At each v, write ni = ni(v) = number of times path goes in direction 1, τ, τ 2.

Qx(γ) =
∏

v

3∏
i=1

(
eαi

a
)ni

= 3−n
∏

v

[
((a/3)−3

3∏
i=1

(eαi)
n1+n2+n3

3

3∏
i=1

(eαi)ni−
n1+n2+n3

3

]

=3−n
∏

v

e−β(v)2 n1+n2+n3
3 exp

(
3∑

i=1

αi(ni − n1+n2+n3
3 )

)

=3−ne−
1
2 Vn exp

(∑
v

α1( 2n1−n2−n3
3 + α2( 2n2−n1−n3

3 ) + α3( 2n3−n1−n2
3 )

)

=3−ne−
1
2 Vn exp

(
2
3

∑
v

〈α1 + α2τ + α3τ
2, n1 + n2τ + n3τ

2〉

)

=3−ne−
1
2 Vn exp

(
2
3

n−1∑
s=0

〈α(xs), dxs〉

)
.
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Sine–Gordon

An integrable but non conformal QFT:

PSG(dh) ∝ exp

(
z
∫

D
cos(

√
βh(x))dx

)
PGFF(dh),

where PGFF = law of (h/
√

2π), h a GFF with log correlations.

Free fermion point

β = 4π: Coleman correspondence, cf. Bauerschmidt–Webb (2023).
This is a massive extension of the fermion-boson correspondence.

At the free fermion point, the Sine-Gordon field is “particularly integrable”.
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Conjectures

For α = constant, we conjecture convergence of the massive dimer height
function to the Sine-Gordon model at the free fermion point β = 4π.

Progress by S. Mason (2022) (full plane in a particular case).

More generally:

Conjecture

Let h(α);Ω denote the limiting height function of the near-critical dimer
height functions associated to the drift vector field α : Ω→ R2. Then the
law of this field is given by

P(α);Ω(dh) ∝ exp

(
z
∫

D

〈
α(x); ei

√
βh(x)

〉
dx
)
PGFF(dh),

as β = 4π. (Free fermion?)

If true, massive SLE would be “flow lines” of free fermion Sine-Gordon...
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