Near critical dimers and massive SLE

Nathanël Berestycki, University of Vienna

(joint work with Levi Haunschmid-Sibitz)

Paris, DIMER conference, July 2023

Outline

- 1) Reminders about the classical *dimer model*
- 2) Near-critical weights
 - Definition, non Gaussian scaling limit
 - Equivalent representation: *Temperley's bijection*
 - New results: convergence to *massive SLE*, universality, conformal covariance,
 - Along the way: scaling limit of LERW with drift
- 3) An exact discrete Girsanov theorem on the triangular lattice
- 4) Some open questions: Sine-Gordon, Ising etc?

1) The dimer model

The dimer model

Let G be a finite, planar, bipartite graph.

A *dimer cover* (or *perfect matching*): a set of edges (=dimers), such that each vertex is incident to exactly one dimer.

The *dimer model* with edge weights w_e :

$$\mathbb{P}(\mathbf{m}) = \frac{1}{Z} \prod_{e \in \mathbf{m}} w_e.$$

Typically $w_e \equiv 1 \ (\rightarrow critical!)$

The dimer model as a random surface

Honeycomb lattice: *lozenge tiling* or a stack of cubes

©Kenyon

Height function

Introduced by Thurston. Hence view as a random surface.

Note: depends on the choice of a reference frame.

Large scale behaviour?

The effect of boundary conditions is, however, not entirely trivial and will be discussed in more detail in a subsequent paper.

P. W. Kasteleyn, 1961

Temperleyan boundary conditions

Divide the vertices into black and white. Divide further into $B_0 = \bullet, B_1 = \times$ (and W_0, W_1).

Temperleyan: all corners are $B_1 = \times$, and one corner is removed.

Scaling limit of height function

Theorem (Kenyon '99)

Let $\mathcal{D} \subset \mathbb{C}$ bounded domain, $\mathcal{D}^{\delta} = \mathcal{D} \cap \delta \mathbb{Z}^2$ with *Temperleyan* boundary conditions. Let h^{δ} be the associated height function. Then,

$$h^{\delta} - \mathbb{E}(h^{\delta}) \rightarrow \frac{1}{\sqrt{\pi}} h_{\mathcal{D}}^{\text{GFF}} \quad \text{as} \quad \delta \rightarrow 0,$$

in distribution.

Main ingredients of the proof:

- Kasteleyn theory (exact solvability): dimer correlations are given by determinants of inverse *Kasteleyn matrix*,
- Asymptotic computation of inverse Kasteleyn matrix (discrete holomorphic + boundary conditions)
- Computation of moments

2) Near-critical dimer model

Makarov-Smirnov (2009):

The key property of SLE is its conformal invariance, which is expected in 2D lattice models only at criticality, and the question naturally arises: Can SLE success be replicated for off-critical models? In most off-critical cases to obtain a non-trivial scaling limit one has to adjust some parameter [...], sending it at an appropriate speed to the critical value. Such limits lead to massive field theories...,

Biperiodic setup

Choose $s_i = 1 + c_i \delta$, where δ = mesh size. *Gasesous/Liquid boundary...*

Massive Laplacian

Let K = Kasteleyn matrix, $D = KK^*$. Then D is (essentially) a *massive Laplacian*:

$$D(b,b) = -\sum_{i=1}^{4} s_i^2$$

4

but

$$\sum_{b'} D(b,b') = 2s_2s_4 + 2s_1s_3 < |D(b,b)|$$

by AM-GM.

Describes a *massive walk* (fixed killing probability).

Natural guess:

Scaling limit = Massive GFF?

$$\mathbb{E}[h(x)h(y)] = \int_0^\infty e^{-m^2t} p_t(x,y) dt$$

Unfortunately this guess is wrong.

Theorem (Chhita, 2012)

Limiting moments of height function can be computed; no Wick rule so non Gaussian !

New results for near-critical dimers

With Levi Haunschmid (2022) we prove:

- Exact connection with Makarov and Smirnov's *massive SLE*₂ (and with massive Laplacian).
- Existence and universality of *scaling limit* of height function in Temperleyan domains
- Conformal *covariance* of scaling limit

Dimers on $\mathbb{Z}^2 \cap D \leftrightarrow$ pairs of dual spanning trees on B_0, B_1 lattices. Temperleyan boundary conditions: wired/free tree.

B.-Laslier-Ray point of view

Often easier to work with Temperleyan trees. Keeps all the information, even in scaling limit ("Imaginary Geometry").

Dimers on $\mathbb{Z}^2 \cap D$, Temperleyan boundary conditions.

Orient dimers black \rightarrow white (just $B_0 = \bullet$ for now)

Double each oriented dimer to get spanning tree on B_0 lattice (wired boundary conditions).

On B_1 lattice, get dual (free boundary conditions) spanning tree.

Remarks

▶ The bijection is local.

- ► Temperleyan boundary conditions for dimer ⇒ wired/free boundary conditions for trees.
- If $w_e \equiv 1$ then $(\mathcal{T}, \mathcal{T}^{\dagger})$ uniform.

▶ More generally, in biperiodic setup,

$$\mathbb{P}(\mathcal{T}=\mathbf{t})\propto\prod_{e\in\mathbf{t}}w_{e/2}.$$

Owing to biperiodic structure, (directed) edges of \mathcal{T} come with weight s_1, \ldots, s_4 .

Extends to hexagonal lattice

Scaling limit of Temperleyan tree

Consider off-critical dimer model on square with $s_i = 1 + c_i \delta$. Let \mathcal{T} = Temperleyan B_0 -tree.

$$\mathbb{P}(\mathcal{T}=\mathbf{t})\propto\prod_{v\in B_0}s_v(\mathbf{t})$$

where $s_{\nu}(\mathbf{t}) \in \{s_1, \dots, s_4\}$ depending on the direction of the unique outgoing edge from ν in \mathbf{t} .

Wilson's algorithm

The branch connecting *z* to ∂D is LERW for the random walk on B_0 with jump probabilities $(s_i)_{i=1}^4$.

The random walk itself converges to BM with drift α ,

$$\alpha = \frac{1}{4}(c_1 + c_2i + c_3i^2 + c_4i^3)$$

But what is the scaling limit of LERW?

Connection with massive SLE₂

Suppose

$$c_1 + c_3 = c_2 + c_4 = 0$$

Theorem 1 (B.–Haunschmid)

Let $z \in \Omega$. Let γ^{δ} = path in Temperleyan tree to $\partial \Omega$, Y_{δ} = endpoint. Then conditionally on $Y_{\delta} = y_{\delta}$, $\gamma^{\delta} \to \text{mSLE}_2$,

where mass $m = \|\alpha\|$.

Massive SLE₂

Consider random walk killed with probability $m^2\delta^2$ at each step.

Condition to leave Ω without dying. What is scaling limit of LERW?

Theorem (Makarov–Smirnov (2009), Chelkak-Wan (2019))

massive LERW converges to "massive SLE2"

Described by Loewner's equation with driving function:

$$d\xi_t = \sqrt{2}dB_t + 2\lambda_t dt;$$

with

$$\lambda_t = \left. \frac{\partial}{\partial w} \log \frac{P_{\Omega_t}^{(m)}(z, w)}{P_{\Omega_t}^{(0)}(z, w)} \right|_{w = \gamma(t)}$$

[m = 0: Lawler-Schramm-Werner 2002]

Additional remarks

Unconditional convergence also holds, then global Radon–Nikodym derivative:

$$\frac{\mathrm{d}\mathbb{P}}{\mathrm{d}\,\mathrm{mSLE}_2}(\gamma) = \exp(2\langle Y - z, \Delta\rangle)$$

where Y = exit point.

Exact same statement for hexagonal lattice $a_i = 1 + c_i \delta$,

$$\alpha = \frac{1}{3}(c_1 + c_2\tau + c_3\tau^2).$$

Convergence of height function

Corollary (B.-Haunschmid)

The Temperleyan tree \mathcal{T}_{δ} has a scaling limit (in Schramm topology); the limit law depends only on Δ and so is the same for hexagonal and square lattice cases.

Proof: Wilson's algorithm.

Corollary (B.-Haunschmid)

The height function of near-critical dimers in Temperleyan domains converge to the same scaling limit.

Proof: "imaginary geometry approach" by B.-Laslier-Ray (2020, 2019+).

Conformal covariance

Conformal covariance:

Image under conformal map preserved, up to power β of derivative of conformal map.

 $(\beta = 0 \text{ means conformal invariance.})$

This requires allowing for general vector field $\alpha : \Omega \to \mathbb{R}^2 \equiv \mathbb{C}$.

Generalised near-critical dimers

At each point $z \in B_0$, assign weights $s_i = 1 + c_i \delta$, with $c_1 + c_3 = 0, c_2 + c_4 = 0$,

$$\frac{1}{4}(c_1 + c_2i + c_3i^2 + c_4i^3) = \alpha$$

Any drift vector α is uniquely encoded in this way.

The random walk with these weights converge in the scaling limit not to a Brownian motion, but to the solution of the SDE

$$dX_t = dB_t + \alpha(X_t)dt$$

LERW with variable drift

Consider a smooth vector field $\alpha : \overline{\Omega} \to \mathbb{R}^2$. Does the LERW have a scaling limit?

Assumptions

Suppose we have sequence of planar graphs G^{δ} , and:

- $\alpha = \nabla \phi$ of gradient type.
- Two laws \mathbb{P}_{δ} , \mathbb{Q}_{δ} such that:
 - under \mathbb{P}_{δ} , RW converge to BM;
 - under \mathbb{Q}_{δ} , RW converges to SDE.
- Uniform absolute continuity: i.e., $d\mathbb{Q}_{\delta}/d\mathbb{P}_{\delta}$ is Uniformly Integrable.

Holds on square lattice and triangular lattices, and conformal deformations thereof.

LERW with variable drift

Theorem 3. (B.–Haunschmid)

The loop-erased random walk with local drift α has a scaling limit.

Described by Loewner's equation with driving function in \mathbb{D} :

$$d\xi_t = \sqrt{2}dB_t + 2\lambda_t dt;$$

with

$$\lambda_t = \left. \frac{\partial}{\partial w} \log \frac{P_{\Omega_t}^{(\alpha)}(z, w)}{P_{\Omega_t}^{(0)}(z, w)} \right|_{w = \gamma(t)}$$

where $\Omega_t = \mathbb{D} \setminus \gamma[0, t],$ $P_{\Omega}^{(\alpha)}(z, w) = \text{Poisson kernel in } \Omega$ for the SDE.

The existence of this Poisson kernel is not trivial. (Smooth Ω : Ben Arous, Kusuoka and Stroock 1984).

cf. Chelkak-Wan 2019.

Corollary

Let $\alpha = \nabla \phi$ be a smooth vector field in $\overline{\Omega}$. Associate near-critical weights on square/hexagonal lattices. Then height function has a scaling limit, call it $h^{(\alpha);\Omega}$. Depends just on α .

Remark: not sure what is analogue on more general lattices.

Theorem 4. (B.–Haunschmid)

Let $F: \tilde{\Omega} \to \Omega$ be a conformal map (with bounded derivative). In law,

$$h^{(\alpha);\Omega} \circ \phi = h^{(\tilde{\alpha});\tilde{\Omega}}$$

where at a point $w \in \tilde{\Omega}$,

$$\tilde{\alpha}(w) = \overline{F'(w)} \cdot \alpha(F(w)).$$

On the imaginary geometry approach to dimers

A powerful approach to dimer models:

- Temperleyan & more, even for balanced random environments (B.–Laslier–Ray, 2020)
- ▶ Riemann Surfaces (B.–Laslier–Ray, 2019, 2022)
- ▶ Piecewise Temperleyan → multiple SLE₈ (B.–Liu, 2023)

Discrete Girsanov on triangular lattice \mathbb{T} .

Define $\beta(v) > 0$ by

$$\exp(-\beta(v)^2) = (a/3)^{-3} \prod_{k=1}^3 e^{\alpha_k},$$

well defined by AM-GM.

Discrete Girsanov on triangular lattice \mathbb{T} .

Define a vector $\alpha(v)$ at every vertex v in the graph,

$$\alpha = \alpha_1 + \alpha_2 \tau + \alpha_3 \tau^2,$$

Lemma

Fix any lattice path $\gamma = (x_0, \ldots, x_n)$ on \mathbb{T} .

$$\frac{\mathbb{Q}}{\mathbb{P}}(\gamma) = \exp(M_n - \frac{1}{2}V_n)$$

where
$$M_n = \frac{2}{3} \sum_{s=0}^{n-1} \langle \alpha(x_s), dx_s \rangle$$
; and $V_n = \frac{2}{3} \sum_{s=0}^{n-1} \beta(x_s)^2$.

Discrete analogue of

$$rac{d\mathbb{Q}}{d\mathbb{P}} = \exp\left(\int_0^t \Delta(X_s)\cdot \mathrm{d}X_s - rac{1}{2}\int_0^t \|\Delta(X_s)\|^2\mathrm{d}s
ight).$$

Corollary (constant drift case)

 $\mathbb{Q}_x(\cdot|x_n = y)$ is the same as a massive walk conditioned to survive up to time *n* and $X_n = y$.

Proof.

At each *v*, write $n_i = n_i(v)$ = number of times path goes in direction 1, τ , τ^2 .

$$\begin{split} \mathbb{Q}_{x}(\gamma) &= \prod_{\nu} \prod_{i=1}^{3} \left(\frac{e^{\alpha_{i}}}{a}\right)^{n_{i}} \\ &= 3^{-n} \prod_{\nu} \left[\left((a/3)^{-3} \prod_{i=1}^{3} (e^{\alpha_{i}})^{\frac{n_{1}+n_{2}+n_{3}}{3}} \prod_{i=1}^{3} (e^{\alpha_{i}})^{n_{i}-\frac{n_{1}+n_{2}+n_{3}}{3}} \right] \\ &= 3^{-n} \prod_{\nu} e^{-\beta(\nu)^{2} \frac{n_{1}+n_{2}+n_{3}}{3}} \exp\left(\sum_{i=1}^{3} \alpha_{i} (n_{i} - \frac{n_{1}+n_{2}+n_{3}}{3}) \right) \\ &= 3^{-n} e^{-\frac{1}{2}V_{n}} \exp\left(\sum_{\nu} \alpha_{1} \left(\frac{2n_{1}-n_{2}-n_{3}}{3} + \alpha_{2} \left(\frac{2n_{2}-n_{1}-n_{3}}{3} \right) + \alpha_{3} \left(\frac{2n_{3}-n_{1}-n_{2}}{3} \right) \right) \\ &= 3^{-n} e^{-\frac{1}{2}V_{n}} \exp\left(\frac{2}{3} \sum_{\nu} \langle \alpha_{1} + \alpha_{2}\tau + \alpha_{3}\tau^{2}, n_{1} + n_{2}\tau + n_{3}\tau^{2} \rangle \right) \\ &= 3^{-n} e^{-\frac{1}{2}V_{n}} \exp\left(\frac{2}{3} \sum_{s=0}^{n-1} \langle \alpha(x_{s}), dx_{s} \rangle \right). \end{split}$$

Sine-Gordon

An integrable but non conformal QFT:

$$\mathbb{P}^{\rm SG}(dh) \propto \exp\left(z\int_D\cos(\sqrt{\beta}h(x))dx\right)\mathbb{P}^{\rm GFF}(dh),$$

where $\mathbb{P}^{\text{GFF}} = \text{law of } (h/\sqrt{2\pi}), h \text{ a GFF with log correlations.}$

Free fermion point

 $\beta = 4\pi$: **Coleman correspondence**, cf. Bauerschmidt–Webb (2023). This is a massive extension of the fermion-boson correspondence.

At the free fermion point, the Sine-Gordon field is "particularly integrable".

Conjectures

For $\alpha = \text{constant}$, we conjecture convergence of the massive dimer height function to the Sine-Gordon model at the free fermion point $\beta = 4\pi$.

Progress by S. Mason (2022) (full plane in a particular case).

More generally:

Conjecture

Let $h^{(\alpha);\Omega}$ denote the limiting height function of the near-critical dimer height functions associated to the drift vector field $\alpha : \Omega \to \mathbb{R}^2$. Then the law of this field is given by

$$\mathbb{P}^{(lpha);\Omega}(dh) \propto \exp\left(z\int_D\left\langlelpha(x);e^{i\sqrt{eta}h(x)}
ight
angle dx
ight)\mathbb{P}^{ ext{GFF}}(dh),$$

as $\beta = 4\pi$. (Free fermion?)

If true, massive SLE would be "flow lines" of free fermion Sine-Gordon...