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The model

Motivation:
The four-vertex model is just a little bit more difficult than ‘plain vanilla’
dimers, but not too much... Definitely easier than:
- five-vertex model [DeGier-Kenyon-Watson’21][Kenyon-Prause’22];
- six-vertex model at ∆ < 1 [FC-Pronko’10][Aggarwal’20].
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a b c c

‘scalar-product’ boundary conditions
N
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(n,m)
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ZL,M,N(a, b, c) =
∑
{conf}

a#ab#bc#c

#a = (L−N)(M−N), #b = N(M−L+N), #c = 2N(L−N)

ZL,M,N(a, b, c) = a(L−N)(M−N)bN(M−L+N)c2N(L−N)ZL,M,N

ZL,M,N = PL(N, L− N,M − L+ 1)
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Some properties of the model

1) Reflection symmetry: ΦL,M,N(L− n + 1,M −m + 1) = ΦL,M,N(n,m).

2) Particle-hole symmetry: ΦL,M,L−N(L− n + 1,m) = ΦL,M,N(n,m) .

3) Equivalent hexagonal domain.

4) Four-vertex model and NILP: K = M − L+ N + 1
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Lattice paths and plane partitions

column-strict BPP
box of size

N× (L−N)× (M−N)

four-vertex model
N paths

on a L×M lattice

NILP
N paths

on a L× K lattice

BPP
box of size

N × (L−N)× (K −N)

K := M − L+ N + 1

Here N = 3, L = 7, M = 12, K = 9
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Main result

• lattice coordinates: (n,m) ∈ [1, L]× [1,M]

• Scaling limit:

L = ⌈Lℓ⌉, M = ⌈Mℓ⌉, N = ⌈N ℓ⌉, n = ⌈xℓ⌉, m = ⌈yℓ⌉, ℓ → ∞
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Main result

Theorem. [BCMP’23] The portions Γ1 and Γ2 of the arctic curve of the
four-vertex model with ‘scalar-product’ boundary conditions are given by:{

Γ1 : y = f1(L,M,N ; x), x ∈ (0, xc],

Γ2 : y = f2(L,M,N ; x), x ∈ [xc,L − x̃c],

where

f1(L,M,N ; x) =
MN (L − 2x) + (M+N )Lx

L2

+ 2

√
MN (L −N )(M−L)(L − x)x

L2
,

f2(L,M,N ; x) = (L −M−N − x) + 2f1(L,M,N ; x),

and
xc =

(M−L)(L −N )

M−L+N , x̃c =
(M−L)N
M−N .

Fluctuations of Γ1 and Γ2 are governed by the Tracy-Widom distribution.
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▶ In principle one could have worked out the form of the arctic curve
from that for lozenge tilings of an hexagon. However bijection is
somewhat ‘non-local’... Different portions of the lattice are deformed
in different ways, when moving between NILP and 4VM.

▶ The fluctuations of the arctic curve in the present model provides one
more example in support of the universality of Tracy-Widom
distribution.

▶ Two possible derivations of the above result:
- Tangent Method [FC-Sportiello’16]: very intuitive and efficient, but
still heuristic;
- EFP Method: slightly more involved, but, at least in the present
case, it may be carried out in full rigour. And gives also the
Tracy-Widom fluctuations for free.



Emptiness Formation Probability (EFP)
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q

Ap,q := {q top vertices in pth vert. line}
B := {vertices in the hex. domain}
Θ := Ap,q ∩ B

|Θ| = p + q − L+ N =: q̃

FL,M,N(p, q) :=
#configs: (v=a, ∀v∈Θ)

#configs

p + q > L− N

p ≤ L− N
p + q < M − N



Emptiness Formation Probability (EFP)

▶ If the (p, q) topleft rectangle is relatively small then the probability
FL.M.N(p, q) is close to one.

▶ The probability FL.M.N(p, q) is a decreasing function of p and q , and
vanishes if these are deep enough into the disordered region.

▶ In the scaling limit, FL.M.N(p, q) → 1 outside the arctic curve, and
FL,M,N(p, q) → 0 as soon as (p, q) penetrates the disordered region.

▶ In other words, in the scaling limit, FL,M,N(p, q) has a stepwise
behaviour, from 1 to 0, in correspondence of the arctic curve.
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Hahn log-gas
Hahn measure:

w
(α,β)
n (x) =

(
α+ x

x

)(
β + n − x

n − x

)
, x ∈ [0, n]

Provided that α, β > −1 or α, β < −n, we may define{
Q

(α,β)
k,n

}n

k=0
such that

n∑
x=0

w
(α,β)
n (x)Q

(α,β)
k,n (x)Q

(α,β)
l ,n (x) = δk,l .

We have

Q
(α,β)
k,n (x) = (−1)k

√(
n

k

)
n!(2k + α+ β + 1)(α+ 1)k(α+ β + 1)k
(α+ β + 1)n+1(β + 1)k(n + α+ β + 2)k

× 3F2

(−k , k + α+ β + 1, −x

α+ 1, −n

∣∣∣∣ 1)
known as (normalized) Hahn polynomials [Koekoek-Lesky-Swarttouw’10].



Hahn log-gas
Hahn measure:

w
(α,β)
n (x) =

(
α+ x

x

)(
β + n − x

n − x

)
, x ∈ [0, n]

Let x := {x1, . . . , xn}, with 0 ≤ x1 < · · · < xs ≤ n,
= ordered set of positions of s particles on the discrete interval [0, n]

Probability measure on [0, n]s :

P
(α,β)
n,s [x] =

1

Z (α, β, s, n)

∏
1≤i<j≤s

(xi − xj)
2

s∏
i=1

w
(α,β)
n (xj)

The normalization constant

Z (α, β, s, n) =
∑

0≤x≤n

∏
1≤i<j≤s

(xi − xj)
2

s∏
i=1

w
(α,β)
n (xj)

is the partition function of the Hahn log-gas (α, β > −1 or α, β < −n).



Hahn log-gas

▶ The partition function as an Hankel determinant[Szegö’39]:

Z (α, β, s, n) =
1

n!
det

1≤i ,j≤s

[
n∑

x=0

x i+j−2w
(α,β)
n (x)

]

built from the the moments of Hahn measure.



Hahn log-gas

Let:
H(d , α, β, s, n) :=

∑
0≤x≤d

P
(α,β)
n,s [x]

This is nothing but the ‘gap probability’, i.e., the probability of having, for
the Hahn log-gas with parameters α, β, n, and s particles, no particle with
coordinate larger that d .

▶ In the context of N NILP on the L× K lattice (or plane partitions, or
lozenge tilings), the Emptiness Formation Probability at (p, q)
evaluates to H(K − q, p − N, L− N − p,N,K ) [Johansson’00].



Hahn log-gas

▶ The ‘gap probability’ as an Hankel determinant[Szegö’39]:

H(d , α, β, s, n) =
1

n!
det

1≤i ,j≤s

[
d∑

x=0

x i+j−2w
(α,β)
n (x)

]

▶ The ‘gap probability’ as a Fredholm determinant[Gaudin-Mehta’60s]:

H(d , α, β, s, n) = det
[
1− Kn,s |(d ,n]

]
,

where Kn,s |(d ,n] is a discrete integral operator acting on L2(d , n] with
kernel

Kn,s(x , y) =
s∑

k=0

Q
(α,β)
k,n (x)Q

(α,β)
k,n (y)

√
w

(α,β)
n (x)w

(α,β)
n (y), x , y ∈ [0, n],

i.e., the Christoffel-Darboux kernel for (normalized) Hahn polynomials.



Representation for EFP

Proposition. [BCMP’23] The Emptiness Formation Probability in the
four-vertex model with N lines on the L×M lattice may be written as:

FL,M,N(p, q) = H(d , α, β, s, n)

with parameters

d =M − N +min(p,N)− p − q

α =|N − p|
β =L− N − p

s =min(p,N)

n =M − L+min(p,N).

▶ The conditions α, β > −1 are evidently satisfied.

▶ The evaluation is based on the bijection between the four-vertex
model and NILP.



Arctic curve

Asymptotic behaviour of F
(p,q)
L,M,N in the scaling limit~�

Behaviour of H(d , α, β, s, n) in the limit ℓ → ∞ , where:

d = ⌊d0ℓ⌋, α = ⌊α0ℓ⌋, β = ⌊β0ℓ⌋, s = ⌈s0ℓ⌉, n = ⌈n0ℓ⌉,

with α0, β > 0, and s0 < d0 < n0.

▶ Inspired by Random Matrix models, one would rescale xj = ⌊µjℓ⌋,
interpret the sums as Riemann sums and, in the large ℓ limit, replace
them with integrals. Correspondingly, one would introduce a density
ρ(µ), which may be evaluated by solving some variational problem,
etc ...



Arctic curve

Heuristically, H(d , α, β, s, n) ∼
∫ d0
0 ρ(µ)dµ∫ n0
0 ρ(µ)dµ

∼ Θ(d0 − R0) ,

where R0 = R0(α0, β0, s0, n0) is the right endpoint of the support of ρ(µ).

Thus the arctic curve is given by:

R0(α0, β0, s0, n0) = d0,

see [Johansson’00] for a rigorous derivation.

▶ We do not need full knowledge of ρ(µ), but only its support.

▶ This would be anyway some piece of work, but fortunately, already
solved! [Baik-Kriecherbauer-McLaughlin-Miller’07]

▶ in our notations,

R(α0, β0, s0, n0) =

=

(√
(s0 + α0 + β0)(s0 + α0)(n0 − s0) +

√
(s0 + α0 + β0 + n0)(s0 + β0)s0

(2s0 + α0 + β0)

)2
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Fluctuations
Choosing some suitable value of p, we may write for EFP:

FL,M,N(p, q) = H(M − p − q, p − N, L− N − p,N,M − L+ N),

Let ξ denote the value of the topmost thick edge in the pth column.
It follows form the definition of EFP, and from its Fredholm determinant
representation that

P(ξ < M − q) = FL,M,N(p, q)

= det[1− KM−L+N,N |(M−p−q,M−L+N]]

Focus now on values of M − q in the vicinity of the arctic curve, p + ℓR0.
In such regime, in the scaling limit, the Christoffel-Darboux kernel for Hahn
measure tends to the Airy kernel [Baik-Kriecherbauer-McLauglin-Miller’07].
In our model and notations, we have, for suitable constant t:

lim
ℓ→∞

P
(
ξ − p − ℓR(α0, β0, s0, n0)

(tℓ)1/3
≤ x

)
= det[1− A|(x ,∞)].
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Emptiness Formation Probability
FL,M,N(p, q)

Anti-ferroelectric phase
Formation Probability

GL,M,N(p, q)



Representation for AFP

Proposition. [BCMP’23] The Anti-ferroelectric Formation Probability in the
four-vertex model with N lines on the L×M lattice may be written as:

GL,M,N(p, q) = H(d , α, β, s, n)

with parameters

d =L− N +min(r̃ ,M − L+ 1)− 2− q + r̃

α =|M − L− r̃ + 1|
β =N − r̃

s =min(r̃ ,M − L+ 1)

n =L− N +min(r̃ ,M − L+ 1)− 1.

And then proceed as above to evaluate Γ2, and recover Tracy-Widom for
fluctuations. Next, use symmetries of the model to get Γ3, . . . , Γ6.



Some open questions

▶ Limit shapes? We tried, but probably not hard enough.
Maybe the approach of [Kenyon-Prause’20] could be useful?
In case, are fluctuations of the limit shape again governed by GFF.

▶ Fluctuations of configurations near a contact point?
In ASMs and lozenge tilings, GUE corner process [Gorin’14].
But here reflection symmetry is broken; has this any effect?


