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The model

Motivation:
The four-vertex model is just a little bit more difficult than ‘plain vanilla’
dimers, but not too much... Definitely easier than:
- five-vertex model [DeGier-Kenyon-Watson’21] [Kenyon-Prause’22];
- six-vertex model at A < 1 [FC-Pronko’10] [Aggarwal’20].
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The model

#a=
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The model

ZL,I\/I,N(3; b, C) = Z qHap#b #e
{conf}

#a=(L—N)(M—N), #b=N(M—L+N), #c=2N(L—N)

ZL M N(a; b, C) — a(L—N)(M—N)bN(M—L-‘rN)CZN(L—N)ZL‘MﬂN
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The model

ZL,I\/I,N(Q; b, C) = Z qHap#b #e
{conf}

#a=(L—N)(M—N), #b=N(M—L+N), #c=2N(L—N)

ZL M N(a; b, C) _ a(L—N)(M—N)bN(M—L-‘rN)CZN(L—N)ZL‘MﬂN

ZL.,I\/I,N = PL(N, L—NM—L+ 1)
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Some properties of the model

1) Reflection symmetry:
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Some properties of the model

1) Reflection symmetry: ®; pyny(L—n+1,M —m+1) = &y n(n, m).
2) Particle-hole symmetry: ®; pp; n(L—n+1,m) =y n(n,m) .

3) Equivalent hexagonal domain.

4) Four-vertex model and NILP:  K=M—-L+ N+1

M
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Lattice paths and plane partitions

R
-
- ' - >
= - —
< N ﬁ
column-strict BPP four-vertex model NILP BPP
box of size N paths N paths box of size

Nx(L=N)x(M—N) onalx M lattice onal x K lattice N x (L—N)x(K—N)

Ki=M-L+N+1

Here N =3, L =7 M=12, K=9
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The problem

(

(L, M, N) = (70, 120, 30) (140, 240, 60) (140, 240, 60) (140, 240, 60)
density of a-vertices density of b-vertices  density of c-vertices
10° simulations 10° simulations 10% simulations

Uniformly sampled configurations, generated with CFTP [Propp-Wilson’96]



Main result
e lattice coordinates: (n,m) € [1, L] x [1, M]
e Scaling limit:

L=T[C0), M=[M{, N=[NC, n=[xt], m=][yl], (o



N:L:M=1:5:8




Main result

Theorem. [Bcup’ 23] The portions 1 and > of the arctic curve of the
four-vertex model with ‘scalar-product’ boundary conditions are given by:

M: y=aLMN;x), xe(0,x],
M. y=h(L,MN;x), xE€El[x,L—X%],

where
(L, M,N;x) = MN(L ~ 2X);2‘ (M +N)Lx
VMN(L —N)M — L)(£ — x)x
+2 - |
B(L, M N x) = (£ = M= N =x) + 2L, M N x),
and
_MoO(E-N) - MoON
ETMOLAN T Mo

Fluctuations of '] and I, are governed by the Tracy-Widom distribution.
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The fluctuations of the arctic curve in the present model provides one
more example in support of the universality of Tracy-Widom
distribution.

Two possible derivations of the above result:

- Tangent Method [Fc-Sportiello’16]: very intuitive and efficient, but
still heuristic;

- EFP Method: slightly more involved, but, at least in the present
case, it may be carried out in full rigour. And gives also the
Tracy-Widom fluctuations for free.



Emptiness Formation Probability (EFP)

| p ! N
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Emptiness Formation Probability (EFP)

If the (p, q) topleft rectangle is relatively small then the probability
Fi.m.n(p, q) is close to one.

The probability F; v .n(p, q) is a decreasing function of p and g , and
vanishes if these are deep enough into the disordered region.

In the scaling limit, F. pm.n(p, g) — 1 outside the arctic curve, and
Fimn(p,g) — 0 as soon as (p, q) penetrates the disordered region.

In other words, in the scaling limit, F; p n(p, ) has a stepwise
behaviour, from 1 to 0, in correspondence of the arctic curve.
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Hahn log-gas

Hahn measure:

WD) = (O‘ “) (5 - X>, x € [0,

X n—Xx

Provided that a, 6 > —1 or o, 8 < —n, we may define
n
0475 n 0476 0476 O[,ﬁ
{Ql(@n )}kzo such that E_O wl )(X)Q,((’n )(X)Ql(m )(x) = 0k,

We have

ab’) vk (M n'2k+a+B+1)(a+D)k(at+ B+ 1)k
Qen ()= (1) \/<k>(a+5+1)n+1(5+1)k(n+a+ﬁ+2)k

-k, k+a+5+1, —x
X3F2< a+1, —n

)

known as (normalized) Hahn polynomials [Koekoek-Lesky-Swarttouw’10].



Hahn log-gas

Hahn measure:

WD) = (“ “) (5 - X>, x € [0,

X n—Xx

Let x == {x1,...,xp}, with 0 < x3 < --- < xs < n,
= ordered set of positions of s particles on the discrete interval [0, n]

Probability measure on [0, n]°:
aﬁ)[x] — ; (X' _ X')2 2 Wna,ﬁ)(X,)

The normalization constant

S

Z(eBosimy = > I Gi=xT]ws™"04)

0<x<n 1<i<j<s i=1

is the partition function of the Hahn log-gas (o, 5 > —1 or a,, < —n),



Hahn log-gas

» The partition function as an Hankel determinant[szegs’39]:

Z(a, B,s,n) = — det [Zx'ﬂ 2w (x )]

n! 1<i,j<s

built from the the moments of Hahn measure.



Hahn log-gas

Let:
H(d,o,B,s,n) = Z P,(,f);’ﬂ)[x]
0<x<d
This is nothing but the ‘gap probability’, i.e., the probability of having, for
the Hahn log-gas with parameters o, (3, n, and s particles, no particle with
coordinate larger that d.

» In the context of N NILP on the L x K lattice (or plane partitions, or
lozenge tilings), the Emptiness Formation Probability at (p, q)
evaluates to H(K — g,p— N,L— N — p, N, K) [Johansson’00].



Hahn log-gas

» The ‘gap probability’ as an Hankel determinant[Szegs’39]:

H(d7a76757n) — det [ZX’—H 2 (O‘ﬁ )]

n| 1<ij<s

» The ‘gap probability’ as a Fredholm determinant[Gaudin-Mehta’60s]:
H(daaa5>s> n) = det [1 - Kn,s|(d,n]] )

where Ky, s|(4,0 is a discrete integral operator acting on L?(d, n] with
kernel

Kns(,) Zok*” WD w D), x,y € [0,1]

i.e., the Christoffel-Darboux kernel for (normalized) Hahn polynomials.



Representation for EFP

Proposition. [BcvP’23] The Emptiness Formation Probability in the
four-vertex model with N lines on the L x M lattice may be written as:

FL,M,N(p7 q) = H(d7a7/3757 n)

with parameters

d=M— N+ min(p,N)—p—gq

a =[N —p|
B=L-N-p
s =min(p, N)

n=M — L+ min(p, N).

» The conditions a, 3 > —1 are evidently satisfied.

» The evaluation is based on the bijection between the four-vertex
model and NILP.



Arctic curve

Asymptotic behaviour of FL(p,\’;’)N in the scaling limit

)

Behaviour of H(d, «, 3, s, n) in the limit £ — oo , where:
d= Ldofj, o = L(Xo“, /)) = Lﬁo@, s = [50[|, n = [noﬂ,

with ag, 5 > 0, and sp < dy < ng.

» Inspired by Random Matrix models, one would rescale x; = | p;¢],
interpret the sums as Riemann sums and, in the large £ limit, replace
them with integrals. Correspondingly, one would introduce a density
p(1), which may be evaluated by solving some variational problem,
etc ...




Arctic curve

- Jo® p()dps
Heuristically, H(d,«,S,s,n) ~ m ~ ©(dy — Ro) ,
0

where Ry = Ro(«o, Bo, S0, no) is the right endpoint of the support of p(u).
Thus the arctic curve is given by:
Ro(co, Bo, S0, no) = do,

see [Johansson’00] for a rigorous derivation.
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Arctic curve
Heuristically, H(d,a, 3, s, n) ~ % ~ ©(do — Ry) ,
where Ry = Ro(«o, Bo, S0, no) is the right endpoint of the support of p(u).
Thus the arctic curve is given by:
Ro(, Bo, S0, no) = do,
see [Johansson’00] for a rigorous derivation.
» We do not need full knowledge of p(1), but only its support.

» This would be anyway some piece of work, but fortunately, already
solved! [Baik-Kriecherbauer-McLaughlin-Miller’07]
» in our notations,

R(awo, Bo, s0, no) =

. \/(So + ao + Bo)(so + ao)(no — s0) + \/(So + ao+ Bo+ no)(so + Bo)so ’
B (250 + o + So) ’




Fluctuations

Choosing some suitable value of p, we may write for EFP:
FLMyN(paq):H(M_p_qvp_N7L_N_vavM_L+N),

Let ¢ denote the value of the topmost thick edge in the p" column.
It follows form the definition of EFP, and from its Fredholm determinant
representation that

P(§ <M —q)= FLmn(p,q)
= det[l — Kn—Lonnl(M—p—gM—L+n]]

Focus now on values of M — g in the vicinity of the arctic curve, p + ¢Rp.
In such regime, in the scaling limit, the Christoffel-Darboux kernel for Hahn
measure tends to the Airy kernel [Baik-Kriecherbauer-McLauglin-Miller’07].
In our model and notations, we have, for suitable constant t:

‘S —pP— KR(Q(% 607 50, nO)

[im P



EFP and AFP




EFP and AFP
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Representation for AFP

Proposition. [Bcvp’23] The Anti-ferroelectric Formation Probability in the
four-vertex model with N lines on the L x M lattice may be written as:

GL,M,N(I’? q) = H(d7 «, 67 S, n)
with parameters

d=L—N+min(f,M—L+1)—2—-q+7F
a=|M-L-F+1]

g=N-—F

s =min(F, M — L+1)

n=L—N+min(/; M—-L+1)—1

And then proceed as above to evaluate 5, and recover Tracy-Widom for
fluctuations. Next, use symmetries of the model to get I3, ..., .



Some open questions

» Limit shapes? We tried, but probably not hard enough.
Maybe the approach of [Kenyon-Prause’20] could be useful?
In case, are fluctuations of the limit shape again governed by GFF.

» Fluctuations of configurations near a contact point?
In ASMs and lozenge tilings, GUE corner process [Gorin’14].
But here reflection symmetry is broken; has this any effect?



