Dimer2023: DIMERS ANR final conference
Paris, July 10-13, 2023

Arctic curves of the four-vertex model

Filippo Colomo
INFN, Florence

Based on arXiv:2307.03076 - joint work with:
I.N. Burenev (Steklov Mathematical Institute, RAS, Saint Petersbourg)
A. Maroncelli (University of Florence \& INFN, Florence)
A.G. Pronko (Steklov Mathematical Institute, RAS, Saint Petersbourg)

The model

Motivation:

The four-vertex model is just a little bit more difficult than 'plain vanilla' dimers, but not too much... Definitely easier than:

- five-vertex model [DeGier-Kenyon-Watson'21] [Kenyon-Prause'22];
- six-vertex model at $\Delta<1$ [FC-Pronko'10] [Aggarwal'20].

The model

Motivation:

The four-vertex model is just a little bit more difficult than 'plain vanilla' dimers, but not too much... Definitely easier than:

- five-vertex model [DeGier-Kenyon-Watson'21] [Kenyon-Prause'22];
- six-vertex model at $\Delta<1$ [FC-Pronko'10] [Aggarwal'20].

The model

Motivation:

The four-vertex model is just a little bit more difficult than 'plain vanilla' dimers, but not too much... Definitely easier than:

- five-vertex model [DeGier-Kenyon-Watson'21] [Kenyon-Prause'22];
- six-vertex model at $\Delta<1$ [FC-Pronko'10] [Aggarwal'20].

The model

Motivation:

The four-vertex model is just a little bit more difficult than 'plain vanilla' dimers, but not too much... Definitely easier than:

- five-vertex model [DeGier-Kenyon-Watson'21] [Kenyon-Prause'22];
- six-vertex model at $\Delta<1$ [FC-Pronko'10] [Aggarwal'20].

The model

The model

a

b

c

c
'scalar-product' boundary conditions

The model

$$
Z_{L, M, N}(a, b, c)=\sum_{\{\text {conf }\}} a^{\# a} b^{\# b} c^{\# c}
$$

'scalar-product' boundary conditions

The model

$$
\begin{aligned}
& Z_{L, M, N}(a, b, c)=\sum_{\{c o n f\}} a^{\# a} b^{\# b} c^{\# c} \\
& \# a=(L-N)(M-N), \quad \# b=N(M-L+N), \quad \# c=2 N(L-N),
\end{aligned}
$$

The model

$$
\begin{gathered}
Z_{L, M, N}(a, b, c)=\sum_{\{c o n f\}} a^{\# a} b^{\# b} c^{\# c} \\
\# a=(L-N)(M-N), \quad \# b=N(M-L+N), \quad \# c=2 N(L-N) \\
Z_{L, M, N}(a, b, c)=a^{(L-N)(M-N)} b^{N(M-L+N)} c^{2 N(L-N)} Z_{L, M, N}
\end{gathered}
$$

The model

$$
\begin{gathered}
Z_{L, M, N}(a, b, c)=\sum_{\{c o n f\}} a^{\# a} b^{\# b} c^{\# c} \\
\# a=(L-N)(M-N), \quad \# b=N(M-L+N), \quad \# c=2 N(L-N) \\
Z_{L, M, N}(a, b, c)=a^{(L-N)(M-N)} b^{N(M-L+N)} c^{2 N(L-N)} Z_{L, M, N} \\
Z_{L, M, N}=\operatorname{PL}(N, L-N, M-L+1)
\end{gathered}
$$

Some properties of the model

1) Reflection symmetry:

$$
\Phi_{L, M, N}(L-n+1, M-m+1)=\Phi_{L, M, N}(n, m)
$$

Some properties of the model

1) Reflection symmetry: $\Phi_{L, M, N}(L-n+1, M-m+1)=\Phi_{L, M, N}(n, m)$.
2) Particle-hole symmetry:

Some properties of the model

1) Reflection symmetry: $\Phi_{L, M, N}(L-n+1, M-m+1)=\Phi_{L, M, N}(n, m)$.
2) Particle-hole symmetry: $\Phi_{L, M, L-N}(L-n+1, m)=\Phi_{L, M, N}(n, m)$.
3) Equivalent hexagonal domain:

Some properties of the model

1) Reflection symmetry: $\Phi_{L, M, N}(L-n+1, M-m+1)=\Phi_{L, M, N}(n, m)$.
2) Particle-hole symmetry: $\Phi_{L, M, L-N}(L-n+1, m)=\Phi_{L, M, N}(n, m)$.
3) Equivalent hexagonal domain.
4) Four-vertex model and NILP: $K=M-L+N+1$

Lattice paths and plane partitions

column-strict BPP box of size $N \times(L-N) \times(M-N)$
four-vertex model N paths
on a $L \times M$ lattice

NILP
N paths
on a $L \times K$ lattice

BPP
box of size

$$
N \times(L-N) \times(K-N)
$$

$$
K:=M-L+N+1
$$

Here $N=3, L=7, M=12, K=9$

The problem

$(L, M, N)=(70,120,30)$

Uniformly sampled configuration, generated with CFTP [Propp-Wilson'96]

The problem

The problem

$(L, M, N)=(70,120,30)$

Uniformly sampled configurations, generated with CFTP [Propp-Wilson'96]

The problem

$(L, M, N)=(70,120,30)$

(140, 240, 60)
density of a-vertices
10^{5} simulations

Uniformly sampled configurations, generated with CFTP [Propp-Wilson'96]

The problem

$(L, M, N)=(70,120,30)$

(140, 240, 60)
density of a-vertices
10^{5} simulations

0

(140, 240, 60)
density of b-vertices
10^{5} simulations

0

(140, 240, 60)
density of c-vertices 10^{5} simulations

Uniformly sampled configurations, generated with CFTP [Propp-Wilson'96]

Main result

- lattice coordinates: $(n, m) \in[1, L] \times[1, M]$
- Scaling limit:

$$
L=\lceil\mathcal{L} \ell\rceil, \quad M=\lceil\mathcal{M} \ell\rceil, \quad N=\lceil\mathcal{N} \ell\rceil, \quad n=\lceil x \ell\rceil, \quad m=\lceil y \ell\rceil, \quad \ell \rightarrow \infty
$$

Main result

Theorem. [BCMP' ${ }^{23]}$ The portions Γ_{1} and Γ_{2} of the arctic curve of the four-vertex model with 'scalar-product' boundary conditions are given by:

$$
\left\{\begin{array}{lll}
\Gamma_{1}: & y=f_{1}(\mathcal{L}, \mathcal{M}, \mathcal{N} ; x), & x \in\left(0, x_{\mathrm{c}}\right] \\
\Gamma_{2}: & y=f_{2}(\mathcal{L}, \mathcal{M}, \mathcal{N} ; x), & x \in\left[x_{\mathrm{c}}, \mathcal{L}-\tilde{x}_{\mathrm{c}}\right]
\end{array}\right.
$$

where

$$
\begin{aligned}
& f_{1}(\mathcal{L}, \mathcal{M}, \mathcal{N} ; x)=\frac{\mathcal{M} \mathcal{N}(\mathcal{L}-2 x)+(\mathcal{M}+\mathcal{N}) \mathcal{L} x}{\mathcal{L}^{2}} \\
& \quad+2 \frac{\sqrt{\mathcal{M} \mathcal{N}(\mathcal{L}-\mathcal{N})(\mathcal{M}-\mathcal{L})(\mathcal{L}-x) x}}{\mathcal{L}^{2}} \\
& f_{2}(\mathcal{L}, \mathcal{M}, \mathcal{N} ; x)=(\mathcal{L}-\mathcal{M}-\mathcal{N}-x)+2 f_{1}(\mathcal{L}, \mathcal{M}, \mathcal{N} ; x)
\end{aligned}
$$

and

$$
x_{c}=\frac{(\mathcal{M}-\mathcal{L})(\mathcal{L}-\mathcal{N})}{\mathcal{M}-\mathcal{L}+\mathcal{N}}, \quad \tilde{x}_{c}=\frac{(\mathcal{M}-\mathcal{L}) \mathcal{N}}{\mathcal{M}-\mathcal{N}} .
$$

Fluctuations of Γ_{1} and Γ_{2} are governed by the Tracy-Widom distribution.

Remarks

- The arctic curve is continuous everywhere, but only piecewise analytic. Discontinuity of second derivative at each contact point.

Remarks

- The arctic curve is continuous everywhere, but only piecewise analytic. Discontinuity of second derivative at each contact point.

Remarks

- The arctic curve is continuous everywhere, but only piecewise analytic. Discontinuity of second derivative at each contact point.
- In principle one could have worked out the form of the arctic curve from that for lozenge tilings of an hexagon. However bijection is somewhat 'non-local'... Different portions of the lattice are deformed in different ways, when moving between NILP and 4VM.

Remarks

- The arctic curve is continuous everywhere, but only piecewise analytic. Discontinuity of second derivative at each contact point.
- In principle one could have worked out the form of the arctic curve from that for lozenge tilings of an hexagon. However bijection is somewhat 'non-local'... Different portions of the lattice are deformed in different ways, when moving between NILP and 4VM.
- The fluctuations of the arctic curve in the present model provides one more example in support of the universality of Tracy-Widom distribution.

Remarks

- The arctic curve is continuous everywhere, but only piecewise analytic. Discontinuity of second derivative at each contact point.
- In principle one could have worked out the form of the arctic curve from that for lozenge tilings of an hexagon. However bijection is somewhat 'non-local'... Different portions of the lattice are deformed in different ways, when moving between NILP and 4VM.
- The fluctuations of the arctic curve in the present model provides one more example in support of the universality of Tracy-Widom distribution.
- Two possible derivations of the above result:
- Tangent Method [FC-Sportiello'16]: very intuitive and efficient, but still heuristic;
- EFP Method: slightly more involved, but, at least in the present case, it may be carried out in full rigour. And gives also the Tracy-Widom fluctuations for free.

Emptiness Formation Probability (EFP)

Emptiness Formation Probability (EFP)

- If the (p, q) topleft rectangle is relatively small then the probability $F_{L . M . N}(p, q)$ is close to one.
- The probability $F_{L . M . N}(p, q)$ is a decreasing function of p and q, and vanishes if these are deep enough into the disordered region.
- In the scaling limit, $F_{L . M . N}(p, q) \rightarrow 1$ outside the arctic curve, and $F_{L, M, N}(p, q) \rightarrow 0$ as soon as (p, q) penetrates the disordered region.
- In other words, in the scaling limit, $F_{L, M, N}(p, q)$ has a stepwise behaviour, from 1 to 0 , in correspondence of the arctic curve.

Hahn log-gas
Hahn measure:

$$
w_{n}^{(\alpha, \beta)}(x)=\binom{\alpha+x}{x}\binom{\beta+n-x}{n-x}, \quad x \in[0, n]
$$

Hahn log-gas

Hahn measure:

$$
w_{n}^{(\alpha, \beta)}(x)=\binom{\alpha+x}{x}\binom{\beta+n-x}{n-x}, \quad x \in[0, n]
$$

Provided that $\alpha, \beta>-1$ or $\alpha, \beta<-n$, we may define

$$
\left\{Q_{k, n}^{(\alpha, \beta)}\right\}_{k=0}^{n} \quad \text { such that } \sum_{x=0}^{n} w_{n}^{(\alpha, \beta)}(x) Q_{k, n}^{(\alpha, \beta)}(x) Q_{l, n}^{(\alpha, \beta)}(x)=\delta_{k, l}
$$

We have

$$
\begin{array}{r}
Q_{k, n}^{(\alpha, \beta)}(x)=(-1)^{k} \sqrt{\binom{n}{k} \frac{n!(2 k+\alpha+\beta+1)(\alpha+1)_{k}(\alpha+\beta+1)_{k}}{(\alpha+\beta+1)_{n+1}(\beta+1)_{k}(n+\alpha+\beta+2)_{k}}} \\
\times{ }_{3} F_{2}\binom{-k, k+\alpha+\beta+1,-x \mid}{\alpha+1,-n}
\end{array}
$$

known as (normalized) Hahn polynomials [Koekoek-Lesky-Swarttouw' 10].

Hahn log-gas

Hahn measure:

$$
w_{n}^{(\alpha, \beta)}(x)=\binom{\alpha+x}{x}\binom{\beta+n-x}{n-x}, \quad x \in[0, n]
$$

Let $\mathbf{x}:=\left\{x_{1}, \ldots, x_{n}\right\}$, with $0 \leq x_{1}<\cdots<x_{s} \leq n$,
$=$ ordered set of positions of s particles on the discrete interval $[0, n]$
Probability measure on $[0, n]^{s}$:

$$
P_{n, s}^{(\alpha, \beta)}[\mathbf{x}]=\frac{1}{Z(\alpha, \beta, s, n)} \prod_{1 \leq i<j \leq s}\left(x_{i}-x_{j}\right)^{2} \prod_{i=1}^{s} w_{n}^{(\alpha, \beta)}\left(x_{j}\right)
$$

The normalization constant

$$
Z(\alpha, \beta, s, n)=\sum_{0 \leq x \leq n} \prod_{1 \leq i<j \leq s}\left(x_{i}-x_{j}\right)^{2} \prod_{i=1}^{s} w_{n}^{(\alpha, \beta)}\left(x_{j}\right)
$$

is the partition function of the Hahn log-gas $(\alpha, \beta>-1$ or $\alpha, \beta<-n)$.

Hahn log-gas

- The partition function as an Hankel determinant[Szegö'39]:

$$
Z(\alpha, \beta, s, n)=\frac{1}{n!} \operatorname{det}_{1 \leq i, j \leq s}\left[\sum_{x=0}^{n} x^{i+j-2} w_{n}^{(\alpha, \beta)}(x)\right]
$$

built from the the moments of Hahn measure.

Hahn log-gas

Let:

$$
H(d, \alpha, \beta, s, n):=\sum_{0 \leq \mathbf{x} \leq d} P_{n, s}^{(\alpha, \beta)}[\mathbf{x}]
$$

This is nothing but the 'gap probability', i.e., the probability of having, for the Hahn log-gas with parameters α, β, n, and s particles, no particle with coordinate larger that d.

- In the context of N NILP on the $L \times K$ lattice (or plane partitions, or lozenge tilings), the Emptiness Formation Probability at (p, q) evaluates to $H(K-q, p-N, L-N-p, N, K)$ [Johansson' 00].

Hahn log-gas

- The 'gap probability' as an Hankel determinant[Szegö'39]:

$$
H(d, \alpha, \beta, s, n)=\frac{1}{n!} \operatorname{det}_{1 \leq i, j \leq s}\left[\sum_{x=0}^{d} x^{i+j-2} w_{n}^{(\alpha, \beta)}(x)\right]
$$

- The 'gap probability' as a Fredholm determinant[Gaudin-Mehta'60s]:

$$
H(d, \alpha, \beta, s, n)=\operatorname{det}\left[1-\left.K_{n, s}\right|_{(d, n]}\right],
$$

where $\left.K_{n, s}\right|_{(d, n]}$ is a discrete integral operator acting on $L^{2}(d, n]$ with kernel
$K_{n, s}(x, y)=\sum_{k=0}^{s} Q_{k, n}^{(\alpha, \beta)}(x) Q_{k, n}^{(\alpha, \beta)}(y) \sqrt{w_{n}^{(\alpha, \beta)}(x) w_{n}^{(\alpha, \beta)}(y)}, \quad x, y \in[0, n]$
i.e., the Christoffel-Darboux kernel for (normalized) Hahn polynomials.

Representation for EFP

Proposition. [BCMP' ${ }^{23]}$ The Emptiness Formation Probability in the four-vertex model with N lines on the $L \times M$ lattice may be written as:

$$
F_{L, M, N}(p, q)=H(d, \alpha, \beta, s, n)
$$

with parameters

$$
\begin{aligned}
& d=M-N+\min (p, N)-p-q \\
& \alpha=|N-p| \\
& \beta=L-N-p \\
& s=\min (p, N) \\
& n=M-L+\min (p, N) .
\end{aligned}
$$

- The conditions $\alpha, \beta>-1$ are evidently satisfied.
- The evaluation is based on the bijection between the four-vertex model and NILP.

Arctic curve

Asymptotic behaviour of $F_{L, M, N}^{(p, q)}$ in the scaling limit

$$
\Uparrow
$$

Behaviour of $H(d, \alpha, \beta, s, n)$ in the limit $\ell \rightarrow \infty$, where:

$$
d=\left\lfloor d_{0} \ell\right\rfloor, \quad \alpha=\left\lfloor\alpha_{0} \ell\right\rfloor, \quad \beta=\left\lfloor\beta_{0} \ell\right\rfloor, \quad s=\left\lceil s_{0} \ell\right\rceil, \quad n=\left\lceil n_{0} \ell\right\rceil,
$$

with $\alpha_{0}, \beta>0$, and $s_{0}<d_{0}<n_{0}$.

- Inspired by Random Matrix models, one would rescale $x_{j}=\left\lfloor\mu_{j} \ell\right\rfloor$, interpret the sums as Riemann sums and, in the large ℓ limit, replace them with integrals. Correspondingly, one would introduce a density $\rho(\mu)$, which may be evaluated by solving some variational problem, etc ...

Arctic curve

Heuristically, $\quad H(d, \alpha, \beta, s, n) \sim \frac{\int_{0}^{d_{0}} \rho(\mu) \mathrm{d} \mu}{\int_{0}^{n_{0}} \rho(\mu) \mathrm{d} \mu} \sim \Theta\left(d_{0}-R_{0}\right)$, where $R_{0}=R_{0}\left(\alpha_{0}, \beta_{0}, s_{0}, n_{0}\right)$ is the right endpoint of the support of $\rho(\mu)$. Thus the arctic curve is given by:

$$
R_{0}\left(\alpha_{0}, \beta_{0}, s_{0}, n_{0}\right)=d_{0}
$$

see [Johansson'00] for a rigorous derivation.

Arctic curve

Heuristically, $\quad H(d, \alpha, \beta, s, n) \sim \frac{\int_{0}^{d_{0}} \rho(\mu) \mathrm{d} \mu}{\int_{0}^{n_{0}} \rho(\mu) \mathrm{d} \mu} \sim \Theta\left(d_{0}-R_{0}\right)$,
where $R_{0}=R_{0}\left(\alpha_{0}, \beta_{0}, s_{0}, n_{0}\right)$ is the right endpoint of the support of $\rho(\mu)$.
Thus the arctic curve is given by:

$$
R_{0}\left(\alpha_{0}, \beta_{0}, s_{0}, n_{0}\right)=d_{0}
$$

see [Johansson'00] for a rigorous derivation.

- We do not need full knowledge of $\rho(\mu)$, but only its support.

Arctic curve

Heuristically, $H(d, \alpha, \beta, s, n) \sim \frac{\int_{0}^{d_{0}} \rho(\mu) \mathrm{d} \mu}{\int_{0}^{n_{0}} \rho(\mu) \mathrm{d} \mu} \sim \Theta\left(d_{0}-R_{0}\right)$,
where $R_{0}=R_{0}\left(\alpha_{0}, \beta_{0}, s_{0}, n_{0}\right)$ is the right endpoint of the support of $\rho(\mu)$.
Thus the arctic curve is given by:

$$
R_{0}\left(\alpha_{0}, \beta_{0}, s_{0}, n_{0}\right)=d_{0}
$$

see [Johansson'00] for a rigorous derivation.

- We do not need full knowledge of $\rho(\mu)$, but only its support.
- This would be anyway some piece of work, but fortunately, already solved! [Baik-Kriecherbauer-McLaughlin-Miller'07]

Arctic curve

Heuristically, $H(d, \alpha, \beta, s, n) \sim \frac{\int_{0}^{d_{0}} \rho(\mu) \mathrm{d} \mu}{\int_{0}^{n_{0}} \rho(\mu) \mathrm{d} \mu} \sim \Theta\left(d_{0}-R_{0}\right)$, where $R_{0}=R_{0}\left(\alpha_{0}, \beta_{0}, s_{0}, n_{0}\right)$ is the right endpoint of the support of $\rho(\mu)$. Thus the arctic curve is given by:

$$
R_{0}\left(\alpha_{0}, \beta_{0}, s_{0}, n_{0}\right)=d_{0}
$$

see [Johansson'00] for a rigorous derivation.

- We do not need full knowledge of $\rho(\mu)$, but only its support.
- This would be anyway some piece of work, but fortunately, already solved! [Baik-Kriecherbauer-McLaughlin-Miller'07]
- in our notations,

$$
\begin{aligned}
& R\left(\alpha_{0}, \beta_{0}, s_{0}, n_{0}\right)= \\
& =\left(\frac{\sqrt{\left(s_{0}+\alpha_{0}+\beta_{0}\right)\left(s_{0}+\alpha_{0}\right)\left(n_{0}-s_{0}\right)}+\sqrt{\left(s_{0}+\alpha_{0}+\beta_{0}+n_{0}\right)\left(s_{0}+\beta_{0}\right) s_{0}}}{\left(2 s_{0}+\alpha_{0}+\beta_{0}\right)}\right)^{2} .
\end{aligned}
$$

Fluctuations

Choosing some suitable value of p, we may write for EFP:

$$
F_{L, M, N}(p, q)=H(M-p-q, p-N, L-N-p, N, M-L+N)
$$

Let ξ denote the value of the topmost thick edge in the $p^{\text {th }}$ column.
It follows form the definition of EFP, and from its Fredholm determinant representation that

$$
\begin{aligned}
\mathbb{P}(\xi<M-q) & =F_{L, M, N}(p, q) \\
& =\operatorname{det}\left[1-\left.K_{M-L+N, N}\right|_{(M-p-q, M-L+N]}\right]
\end{aligned}
$$

Focus now on values of $M-q$ in the vicinity of the arctic curve, $p+\ell R_{0}$. In such regime, in the scaling limit, the Christoffel-Darboux kernel for Hahn measure tends to the Airy kernel [Baik-Kriecherbauer-McLauglin-Miller'07]. In our model and notations, we have, for suitable constant t :

$$
\lim _{\ell \rightarrow \infty} \mathbb{P}\left(\frac{\xi-p-\ell R\left(\alpha_{0}, \beta_{0}, s_{0}, n_{0}\right)}{(t \ell)^{1 / 3}} \leq x\right)=\operatorname{det}\left[1-\left.A\right|_{(x, \infty)}\right]
$$

EFP and AFP
$0 \quad 1$

EFP and AFP

Emptiness Formation Probability $F_{L, M, N}(p, q)$

Anti-ferroelectric phase Formation Probability $G_{L, M, N}(p, q)$

Representation for AFP

Proposition. [всмр' ${ }^{23]}$ The Anti-ferroelectric Formation Probability in the four-vertex model with N lines on the $L \times M$ lattice may be written as:

$$
G_{L, M, N}(p, q)=H(d, \alpha, \beta, s, n)
$$

with parameters

$$
\begin{aligned}
& d=L-N+\min (\tilde{r}, M-L+1)-2-q+\tilde{r} \\
& \alpha=|M-L-\tilde{r}+1| \\
& \beta=N-\tilde{r} \\
& s=\min (\tilde{r}, M-L+1) \\
& n=L-N+\min (\tilde{r}, M-L+1)-1 .
\end{aligned}
$$

And then proceed as above to evaluate Γ_{2}, and recover Tracy-Widom for fluctuations. Next, use symmetries of the model to get $\Gamma_{3}, \ldots, \Gamma_{6}$.

Some open questions

- Limit shapes? We tried, but probably not hard enough. Maybe the approach of [Kenyon-Prause'20] could be useful? In case, are fluctuations of the limit shape again governed by GFF.
- Fluctuations of configurations near a contact point? In ASMs and lozenge tilings, GUE corner process [Gorin'14]. But here reflection symmetry is broken; has this any effect?

