# Move-reduced graphs on the torus arXiv:2212.12962

Terrence George (joint with Pavel Galashin)

UCLA

# Dimer model on the disk



bipartite graph with weight : edges  $\rightarrow \mathbb{R}_{>0}$ n := #boundary white vertices

## Dimer covers



- A **dimer cover** *M* is a subset of the edges that uses each internal vertex exactly once and each boundary vertex at most once.
- The **boundary**  $\partial M$  of *M* is the subset of boundary white vertices not used by *M*.

 $k := #\partial M = #$ white vertices – #black vertices.

• The weight of *M* is the product of weights of edges in *M*.

# Dimer partition functions

• For *I* a *k*-element subset of {1, 2, ..., *n*}, the **dimer partition function** is defined as

$$Z_I := \sum_{M: \partial M = I} \operatorname{weight}(M).$$



 $Z_{134} = acg + bdg$ 

[Postnikov, 2006] boundary measurement : weight  $\mapsto$  ( $Z_l$ )

# Gauge transformations



 $Z_{134} = \lambda acg + \lambda bdg$ 

Multiplying the weights of all edges incident to an internal vertex by a constant  $\lambda \in \mathbb{R}_{>0}$  rescales each  $Z_l$  by  $\lambda$ 

・ロト ・ 伊ト ・ ヨト ・ ヨト

500

э

# Boundary measurement map [Postnikov, 2006]

- We identify weighted bipartite graphs if they are related by gauge transformations. So, we need to identify (Z<sub>l</sub>) and (λZ<sub>l</sub>).
- Projective space  $\mathbb{RP}^{\binom{n}{k}-1} := \mathbb{R}^{\binom{n}{k}} \{0\}$ /scaling.

boundary measurement : weight/gauge  $\mapsto (Z_l)$ /scaling  $\subset \mathbb{RP}^{\binom{n}{k}-1}$ .

**Question:** Which points in projective space arise from dimer models? [Postnikov, 2006] The totally nonnegative Grassmannian  $\operatorname{Gr}_{\geq 0}(k, n)$ .

## The totally nonnegative Grassmannian

- The Grassmannian Gr(k, n) is the space of k-dimensional subspaces of  $\mathbb{R}^n$ .
- We can represent a point  $V \in Gr(k, n)$  as the rowspan of a  $k \times n$  matrix M of full rank.
- The k × k minors of M are (homogeneous) coordinates on Gr(k, n), called Plücker coordinates. Let ∆<sub>I</sub> denote the Plücker coordinate using columns indexed by I, where I is a k-element subset of {1, 2, ..., n}. They give an embedding of Gr(k, n) in ℝP<sup>(n)/1</sup>.

• If 
$$V = \text{rowspan} \begin{bmatrix} 1 & a & 0 & -c \\ 0 & b & 1 & d \end{bmatrix}$$
, then the Plücker coordinates are

 $\Delta_{12} = b, \Delta_{13} = 1, \Delta_{14} = d, \Delta_{23} = a, \Delta_{24} = ad + bc, \Delta_{34} = c.$ 

The subset Gr<sub>≥0</sub>(k, n) of Gr(k, n) where all Plücker coordinates are positive nonnegative is called the totally nonnegative Grassmannian. If a, b, c, d ≥ 0, then V ∈ Gr<sub>≥0</sub>(2, 4).

# Reduction moves [Postnikov, 2006]



• Each reduction move preserves the boundary measurement map.

ヘロト 人間 ト 人 ヨト 人 ヨト 二 ヨ

Dac

A graph is move-reduced if no reduction move can be applied.

# Equivalence moves



- Both moves come with transformations of weights such that the boundary measurement is preserved.
- Two move-reduced graphs are called **move-equivalent** if they are related by moves.

Э

Dac

# Positroid stratification [Postnikov, 2006]

- The totally nonnegative Grassmannian has a stratification into cells called **positroid cells**.
- For move-reduced graphs,

boundary measurement : weights/gauge  $\rightarrow$  positroid cell

is a homeomorphism.



Zig-zag paths





< ロ > < 目 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Decorated permutation [Postnikov, 2006]



# Reduced graphs and minimal graphs

A graph is called **reduced** if the following structures are absent (except for boundary leaves).



A (leafless) graph (with no isolated components) is called **minimal** if it has the fewest number of faces among all graphs with the same decorated permutation.

#### Theorem: [Postnikov, 2006 and Thurston, 2004]

Assume the graph has a dimer cover. Then,

move-reduced  $\iff$  reduced  $\iff$  minimal.

# Classification of positroid cells

Theorem: [Postnikov, 2006] The following objects are in bijection:

- 1. Positroid cells in the totally nonnegative Grassmannian.
- 2. Move-equivalence classes of move-reduced graphs.
- 3. Decorated permutations.
- 4. Many more ...

Question: How to generalize these results to the dimer model on the torus.

A starting point is to classify move-equivalence classes of move-reduced graphs on the torus.

# Newton polygon (analogous to decorated permutation)





<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Reduced graphs on the torus

A graph on the torus is called **reduced** if in the corresponding biperiodic graph in the plane, the following structures are absent.



#### Theorem: [Goncharov–Kenyon, 2013]

Move-equivalence classes of reduced graphs are in bijection with convex polygons with integer vertices.

# $\mathsf{Move}\text{-reduced} \Longrightarrow \mathsf{Reduced}$



We need to generalize the Newton polygon.

<ロ> < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Decorated polygons

[Galashin–G, 2022] In a move-reduced graph, parallel zig-zag paths do not intersect  $\implies$  Parallel zig-zag paths have a well-defined cyclic order.



Newton polygon + collection of cyclic compositions

cyclic composition = composition modulo cyclic shift (so (2,1,3,1) = (1,3,1,2), etc)

# Minimal graphs

A (leafless) graph (with no contractible components) is called **minimal** if it has the fewest number of faces among all graphs with the same decorated polygon.

Theorem 1: [Galashin-G, 2022] Assume the graph has a dimer cover. Then,

 $\mathsf{reduced} \implies \mathsf{move-reduced} \Longleftrightarrow \mathsf{minimal}.$ 

The assumption that the graph has a dimer cover is essential. The following graph is move-reduced but not minimal.



**Open problem:** Is there a generalization of reduced that is equivalent to move-reduced?

## However...



Both graphs have the same decorated Newton polygon, but are not move-equivalent since one of them is connected and the other one is not.

## Main theorem

For a cyclic composition  $\alpha = (\alpha_1, ..., \alpha_k)$  of *n*, let  $rot(\alpha)$  be the smallest cyclic rotation that fixes  $\alpha$ .

- rot(1, 1, 1, 1, 1, 1) = 1.
- rot(2, 1, 2, 1) = 3.
- rot(2, 2, 1, 1) = 6.

Let *d* denote the gcd of  $rot(\alpha)$  as  $\alpha$  varies over the cylic compositions associated to edges of the Newton polygon. For example, *d* = 2 for the following decorated polygon:



**Theorem 2:** [Galashin–G, 2022] For any decorated polygon, there are *d* move-equivalence classes of move-reduced graphs classified by their **modular invariant**.

# Analogies

| disk                  | torus                                   |
|-----------------------|-----------------------------------------|
| move-reduced          | move-reduced                            |
| minimal               | minimal                                 |
| reduced               | ?                                       |
| decorated permutation | decorated polygon $+$ modular invariant |
| boundary measurement  | ?                                       |
| positroid cell        | ?                                       |
| TNN Grassmannian      | ?                                       |

# Spectral transform

- The point in Gr<sub>≥0</sub>(k, n) given by boundary measurement is the kernel of the Kasteleyn matrix K (= space of discrete holomorphic functions).
- On the torus, the Kasteleyn matrix *K* is a matrix of Laurent polynomials *K*(*z*, *w*).
- The map

spectral transform : weights/gauge  $\mapsto$  kernel of K(z, w)

was defined by [Kenyon-Okounkov, 2007].



#### Harnack curve + standard divisor

## Spectral transform

#### Theorem: [Postnikov, 2006]

For move-reduced graphs,

boundary measurement : weights/gauge  $\rightarrow$  positroid cell

is a homeomorphism.

#### Theorem: [Kenyon–Okounkov, 2007]

For reduced graphs,

spectral transform : weights/gauge  $\rightarrow$  Harnack curves with given Newton polygon +

is a homeomorphism.

The explicit inverse appears in [Fock, 2015] for complex weights and [Boutillier–Cimasoni–de Tilière, 2023] for positive weights.

# Analogies

| disk                   | torus                                                   |
|------------------------|---------------------------------------------------------|
| move-reduced           | move-reduced                                            |
| minimal                | minimal                                                 |
| reduced                | ?                                                       |
| decorated permutations | decorated polygons + modular invariant                  |
| boundary measurement   | spectral transform                                      |
| positroid cell         | space of Harnack curves + standard divisors (for reduce |
| TNN Grassmannian       | compactification of space of Harnack curves + standard  |

# Spectral transform for move-reduced graphs?



 $t \rightarrow 0$ 

# THANK YOU!

・ロト・日本・日本・日本・日本・日本