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Dimer model on the disk
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bipartite graph with weight : edges→ R>0

n := #boundary white vertices



Dimer covers

1

23

5

4

6

g

e

a

bc

d

h

boundary = 234

weight = deg

• A dimer cover M is a subset of the edges that uses each internal vertex
exactly once and each boundary vertex at most once.

• The boundary ∂M of M is the subset of boundary white vertices not
used by M.

k := #∂M = #white vertices −#black vertices.

• The weight of M is the product of weights of edges in M.



Dimer partition functions

• For I a k -element subset of {1,2, . . . ,n}, the dimer partition function is
defined as

ZI :=
∑

M:∂M=I

weight(M).
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Z134 = acg + bdg

[Postnikov, 2006] boundary measurement : weight 7→ (ZI)



Gauge transformations
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Z134 = λacg + λbdg

Multiplying the weights of all edges incident to an internal vertex by a
constant λ ∈ R>0 rescales each ZI by λ



Boundary measurement map [Postnikov, 2006]

• We identify weighted bipartite graphs if they are related by gauge
transformations. So, we need to identify (ZI) and (λZI).

• Projective space RP(
n
k)−1 := R(

n
k) − {0}/scaling.

boundary measurement : weight/gauge 7→ (ZI)/scaling ⊂ RP(
n
k)−1.

Question: Which points in projective space arise from dimer models?

[Postnikov, 2006] The totally nonnegative Grassmannian Gr>0(k ,n).



The totally nonnegative Grassmannian

• The Grassmannian Gr(k ,n) is the space of k -dimensional subspaces of
Rn.

• We can represent a point V ∈ Gr(k ,n) as the rowspan of a k × n matrix
M of full rank.

• The k × k minors of M are (homogeneous) coordinates on Gr(k ,n),
called Plücker coordinates. Let ∆I denote the Plücker coordinate using
columns indexed by I, where I is a k -element subset of {1,2, . . . ,n}.
They give an embedding of Gr(k ,n) in RP(

n
k)−1.

• If V = rowspan
[
1 a 0 −c
0 b 1 d

]
, then the Plücker coordinates are

∆12 = b,∆13 = 1,∆14 = d ,∆23 = a,∆24 = ad + bc,∆34 = c.

• The subset Gr>0(k ,n) of Gr(k ,n) where all Plücker coordinates are
positive nonnegative is called the totally nonnegative Grassmannian. If
a,b, c,d > 0, then V ∈ Gr>0(2,4).



Reduction moves [Postnikov, 2006]

−→b a a+ b −→ −→

Parallel edge reduction Leaf reduction Dipole reduction

• Each reduction move preserves the boundary measurement map.

• A graph is move-reduced if no reduction move can be applied.



Equivalence moves
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Spider move Contraction-uncontraction move

• Both moves come with transformations of weights such that the
boundary measurement is preserved.

• Two move-reduced graphs are called move-equivalent if they are
related by moves.



Positroid stratification [Postnikov, 2006]
• The totally nonnegative Grassmannian has a stratification into cells

called positroid cells.
• For move-reduced graphs,

boundary measurement : weights/gauge→ positroid cell

is a homeomorphism.
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[a : 0 : c][0 : b : c]

Gr>0(2,3)



Zig-zag paths
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Decorated permutation [Postnikov, 2006]
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Reduced graphs and minimal graphs

A graph is called reduced if the following structures are absent (except for
boundary leaves).

A (leafless) graph (with no isolated components) is called minimal if it has
the fewest number of faces among all graphs with the same decorated
permutation.

Theorem: [Postnikov, 2006 and Thurston, 2004]

Assume the graph has a dimer cover. Then,

move-reduced⇐⇒ reduced⇐⇒ minimal.



Classification of positroid cells

Theorem: [Postnikov, 2006] The following objects are in bijection:

1. Positroid cells in the totally nonnegative Grassmannian.

2. Move-equivalence classes of move-reduced graphs.

3. Decorated permutations.

4. Many more...

Question: How to generalize these results to the dimer model on the torus.

A starting point is to classify move-equivalence classes of move-reduced
graphs on the torus.



Newton polygon (analogous to decorated permutation)



Reduced graphs on the torus

A graph on the torus is called reduced if in the corresponding biperiodic
graph in the plane, the following structures are absent.

Theorem: [Goncharov–Kenyon, 2013]

Move-equivalence classes of reduced graphs are in bijection with convex
polygons with integer vertices.



Move-reduced 6=⇒ Reduced

We need to generalize the Newton polygon.



Decorated polygons

[Galashin–G, 2022] In a move-reduced graph, parallel zig-zag paths do not
intersect =⇒ Parallel zig-zag paths have a well-defined cyclic order.

(2)

(1) (1)

(1, 1)

(1) (1)

Newton polygon + collection of cyclic compositions

cyclic composition = composition modulo cyclic shift (so (2,1,3,1) = (1,3,1,2),
etc)



Minimal graphs

A (leafless) graph (with no contractible components) is called minimal if it
has the fewest number of faces among all graphs with the same decorated
polygon.

Theorem 1: [Galashin–G, 2022] Assume the graph has a dimer cover. Then,

reduced =⇒ move-reduced⇐⇒ minimal.

The assumption that the graph has a dimer cover is essential. The following
graph is move-reduced but not minimal.

Open problem: Is there a generalization of reduced that is equivalent to
move-reduced?



However...

(2, 2)

(2, 2)

Both graphs have the same decorated Newton polygon, but are not
move-equivalent since one of them is connected and the other one is not.



Main theorem

For a cyclic composition α = (α1, . . . ,αk ) of n, let rot(α) be the smallest
cyclic rotation that fixes α.

• rot(1,1,1,1,1,1) = 1.

• rot(2,1,2,1) = 3.

• rot(2,2,1,1) = 6.

Let d denote the gcd of rot(α) as α varies over the cylic compositions
associated to edges of the Newton polygon. For example, d = 2 for the
following decorated polygon:

(2, 2)

(2, 2)

Theorem 2: [Galashin–G, 2022] For any decorated polygon, there are d
move-equivalence classes of move-reduced graphs classified by their
modular invariant.



Analogies

disk torus

move-reduced move-reduced

minimal minimal

reduced ?

decorated permutation decorated polygon + modular invariant

boundary measurement ?

positroid cell ?

TNN Grassmannian ?



Spectral transform

• The point in Gr>0(k ,n) given by boundary measurement is the kernel of
the Kasteleyn matrix K (= space of discrete holomorphic functions).

• On the torus, the Kasteleyn matrix K is a matrix of Laurent polynomials
K (z,w).

• The map

spectral transform : weights/gauge 7→ kernel of K (z,w)

was defined by [Kenyon–Okounkov, 2007].

spectral transform

Harnack curve + standard divisor



Spectral transform

Theorem: [Postnikov, 2006]

For move-reduced graphs,

boundary measurement : weights/gauge→ positroid cell

is a homeomorphism.

Theorem: [Kenyon–Okounkov, 2007]

For reduced graphs,

spectral transform : weights/gauge→ Harnack curves with given Newton polygon + standard divisors

is a homeomorphism.

The explicit inverse appears in [Fock, 2015] for complex weights and
[Boutillier–Cimasoni–de Tilière, 2023] for positive weights.



Analogies

disk torus

move-reduced move-reduced

minimal minimal

reduced ?

decorated permutations decorated polygons + modular invariant

boundary measurement spectral transform

positroid cell space of Harnack curves + standard divisors (for reduced graphs)

TNN Grassmannian compactification of space of Harnack curves + standard divisors



Spectral transform for move-reduced graphs?

t

t → 0
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