Move-reduced graphs on the torus

 arXiv:2212.12962Terrence George (joint with Pavel Galashin)

UCLA

Dimer model on the disk

bipartite graph with weight: edges $\rightarrow \mathbb{R}_{>0}$
$n:=$ \#boundary white vertices

Dimer covers

boundary $=234$

$$
\text { weight }=\text { deg }
$$

- A dimer cover M is a subset of the edges that uses each internal vertex exactly once and each boundary vertex at most once.
- The boundary ∂M of M is the subset of boundary white vertices not used by M.

$$
k:=\# \partial M=\# \text { white vertices }-\# \text { black vertices. }
$$

- The weight of M is the product of weights of edges in M.

Dimer partition functions

- For I a k-element subset of $\{1,2, \ldots, n\}$, the dimer partition function is defined as

$$
Z_{l}:=\sum_{M: \partial M=1} \text { weight }(M) .
$$

$$
Z_{134}=a c g+b d g
$$

[Postnikov, 2006] boundary measurement : weight $\mapsto\left(Z_{l}\right)$

Gauge transformations

$$
Z_{134}=\lambda a c g+\lambda b d g
$$

Multiplying the weights of all edges incident to an internal vertex by a constant $\lambda \in \mathbb{R}_{>0}$ rescales each Z_{l} by λ

Boundary measurement map [Postnikov, 2006]

- We identify weighted bipartite graphs if they are related by gauge transformations. So, we need to identify $\left(Z_{l}\right)$ and $\left(\lambda Z_{I}\right)$.
- Projective space $\mathbb{R P}^{(k)-1}:=\mathbb{R}^{(k)}-\{0\} /$ scaling.
boundary measurement : weight/gauge $\mapsto\left(Z_{l}\right) /$ scaling $\subset \mathbb{R P}^{\left({ }_{k}^{n}\right)-1}$.
Question: Which points in projective space arise from dimer models?
[Postnikov, 2006] The totally nonnegative Grassmannian $\mathrm{Gr}_{\geqslant 0}(k, n)$.

The totally nonnegative Grassmannian

- The $\operatorname{Grassmannian~} \operatorname{Gr}(k, n)$ is the space of k-dimensional subspaces of \mathbb{R}^{n}.
- We can represent a point $V \in \operatorname{Gr}(k, n)$ as the rowspan of a $k \times n$ matrix M of full rank.
- The $k \times k$ minors of M are (homogeneous) coordinates on $\operatorname{Gr}(k, n)$, called Plücker coordinates. Let Δ, denote the Plücker coordinate using columns indexed by I, where I is a k-element subset of $\{1,2, \ldots, n\}$. They give an embedding of $\operatorname{Gr}(k, n)$ in $\mathbb{R P}^{\binom{n}{k}-1}$.
- If $V=$ rowspan $\left[\begin{array}{lllc}1 & a & 0 & -c \\ 0 & b & 1 & d\end{array}\right]$, then the Plücker coordinates are

$$
\Delta_{12}=b, \Delta_{13}=1, \Delta_{14}=d, \Delta_{23}=a, \Delta_{24}=a d+b c, \Delta_{34}=c .
$$

- The subset $\mathrm{Gr}_{\geqslant 0}(k, n)$ of $\operatorname{Gr}(k, n)$ where all Plücker coordinates are positive nonnegative is called the totally nonnegative Grassmannian. If $a, b, c, d \geqslant 0$, then $V \in \operatorname{Gr} \geqslant 0(2,4)$.

Reduction moves [Postnikov, 2006]

- Each reduction move preserves the boundary measurement map.
- A graph is move-reduced if no reduction move can be applied.

Equivalence moves

Spider move

Contraction-uncontraction move

- Both moves come with transformations of weights such that the boundary measurement is preserved.
- Two move-reduced graphs are called move-equivalent if they are related by moves.

Positroid stratification [Postnikov, 2006]

- The totally nonnegative Grassmannian has a stratification into cells called positroid cells.
- For move-reduced graphs,
boundary measurement : weights/gauge \rightarrow positroid cell is a homeomorphism.

$\mathrm{Gr}_{\geqslant 0}(2,3)$

Zig-zag paths

Decorated permutation [Postnikov, 2006]

decorated permutation $=3514{ }^{\circ} 2^{\circ}$

Reduced graphs and minimal graphs

A graph is called reduced if the following structures are absent (except for boundary leaves).

A (leafless) graph (with no isolated components) is called minimal if it has the fewest number of faces among all graphs with the same decorated permutation.

Theorem: [Postnikov, 2006 and Thurston, 2004]
Assume the graph has a dimer cover. Then,

$$
\text { move-reduced } \Longleftrightarrow \text { reduced } \Longleftrightarrow \text { minimal. }
$$

Classification of positroid cells

Theorem: [Postnikov, 2006] The following objects are in bijection:

1. Positroid cells in the totally nonnegative Grassmannian.
2. Move-equivalence classes of move-reduced graphs.
3. Decorated permutations.
4. Many more...

Question: How to generalize these results to the dimer model on the torus.
A starting point is to classify move-equivalence classes of move-reduced graphs on the torus.

Newton polygon (analogous to decorated permutation)

Reduced graphs on the torus

A graph on the torus is called reduced if in the corresponding biperiodic graph in the plane, the following structures are absent.

Theorem: [Goncharov-Kenyon, 2013]
Move-equivalence classes of reduced graphs are in bijection with convex polygons with integer vertices.

Move-reduced \nRightarrow Reduced

We need to generalize the Newton polygon.

Decorated polygons

[Galashin-G, 2022] In a move-reduced graph, parallel zig-zag paths do not intersect \Longrightarrow Parallel zig-zag paths have a well-defined cyclic order.

Newton polygon + collection of cyclic compositions
cyclic composition $=$ composition modulo cyclic shift (so $(2,1,3,1)=(1,3,1,2)$, etc)

Minimal graphs

A (leafless) graph (with no contractible components) is called minimal if it has the fewest number of faces among all graphs with the same decorated polygon.

Theorem 1: [Galashin-G, 2022] Assume the graph has a dimer cover. Then,

$$
\text { reduced } \Longrightarrow \text { move-reduced } \Longleftrightarrow \text { minimal. }
$$

The assumption that the graph has a dimer cover is essential. The following graph is move-reduced but not minimal.

Open problem: Is there a generalization of reduced that is equivalent to move-reduced?

However...

Both graphs have the same decorated Newton polygon, but are not move-equivalent since one of them is connected and the other one is not.

Main theorem

For a cyclic composition $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ of n, let rot (α) be the smallest cyclic rotation that fixes α.

- $\operatorname{rot}(1,1,1,1,1,1)=1$.
- $\operatorname{rot}(2,1,2,1)=3$.
- $\operatorname{rot}(2,2,1,1)=6$.

Let d denote the gcd of $\operatorname{rot}(\alpha)$ as α varies over the cylic compositions associated to edges of the Newton polygon. For example, $d=2$ for the following decorated polygon:

Theorem 2: [Galashin-G, 2022] For any decorated polygon, there are d move-equivalence classes of move-reduced graphs classified by their modular invariant.

Analogies

disk	torus
move-reduced	move-reduced
minimal	minimal
reduced	$?$
decorated permutation	decorated polygon + modular invariant
boundary measurement	$?$
positroid cell	$?$
TNN Grassmannian	$?$

Spectral transform

- The point in $\mathrm{Gr}_{\geqslant 0}(k, n)$ given by boundary measurement is the kernel of the Kasteleyn matrix K (= space of discrete holomorphic functions).
- On the torus, the Kasteleyn matrix K is a matrix of Laurent polynomials $K(z, w)$.
- The map

$$
\text { spectral transform : weights/gauge } \mapsto \text { kernel of } K(z, w)
$$

was defined by [Kenyon-Okounkov, 2007].

Harnack curve + standard divisor

Spectral transform

Theorem: [Postnikov, 2006]
For move-reduced graphs,
boundary measurement : weights/gauge \rightarrow positroid cell
is a homeomorphism.
Theorem: [Kenyon-Okounkov, 2007]
For reduced graphs,
spectral transform : weights/gauge \rightarrow Harnack curves with given Newton polygon +
is a homeomorphism.
The explicit inverse appears in [Fock, 2015] for complex weights and [Boutillier-Cimasoni-de Tilière, 2023] for positive weights.

Analogies

disk	torus
move-reduced	move-reduced
minimal	minimal
reduced	$?$
decorated permutations	decorated polygons + modular invariant
boundary measurement	spectral transform
positroid cell	space of Harnack curves + standard divisors (for reduce
TNN Grassmannian	compactification of space of Harnack curves + standard

Spectral transform for move-reduced graphs?

THANK YOU!

$$
4 \square>4 \text { 岛 } \downarrow \text { 三 }
$$

