Delocalisation of height functions

Alexander Glazman

University of Innsbruck

joint work with Piet Lammers

11th July, 2023 – Dimers ANR final conference (Paris) –

1D time:

Random Walk \rightarrow Brownian bridge $\operatorname{Var}_n(h(0)) \sim n$.

2D time: graph homomorphisms $\mathbb{Z}^2 \to \mathbb{Z}$

$$h(u) - h(v) = \pm 1$$
, if $u \sim v$.

- $\mathbb{P}(h) = \text{uniform};$
- favour flat points: $\mathbb{P}(h) \propto c^{\# \text{saddle}}$;
- non-symmetric:

$$\mathbb{P}(h) \propto a^{\#\{
earrow, \swarrow\}} \cdot b^{\#\{
earrow, \searrow\}} \cdot c^{\# ext{saddle}}$$

Delocalisation: $\operatorname{Var}_n(h(0)) \to \infty$. Expect: $\operatorname{Var}_n(h(0)) \sim \log n \text{ and } \to \operatorname{GFF}$. **Localisation:** $\forall n \quad \operatorname{Var}_n(h(0)) \leq C$.

 \geq **3D time**: localisation expected. [Peled '10]: uniform measure, $d \gg 3$.

1D time:

Random Walk \rightarrow Brownian bridge $\operatorname{Var}_n(h(0)) \sim n$.

2D time: graph homomorphisms $\mathbb{Z}^2 \to \mathbb{Z}$

$$h(u) - h(v) = \pm 1$$
, if $u \sim v$.

- $\mathbb{P}(h) = \text{uniform};$
- favour flat points: $\mathbb{P}(h) \propto c^{\# \text{saddle}}$;
- non-symmetric:

$$\mathbb{P}(h) \propto a^{\#\{
earrow, \swarrow\}} \cdot b^{\#\{
earrow, \searrow\}} \cdot c^{\# ext{saddle}}$$

Delocalisation: $\operatorname{Var}_n(h(0)) \to \infty$. Expect: $\operatorname{Var}_n(h(0)) \sim \log n \text{ and } \to \operatorname{GFF}$. **Localisation:** $\forall n \quad \operatorname{Var}_n(h(0)) \leq C$.

 \geq **3D time**: localisation expected. [Peled '10]: uniform measure, $d \gg 3$.

1D time:

Random Walk \rightarrow Brownian bridge $\operatorname{Var}_n(h(0)) \sim n$.

2D time: graph homomorphisms $\mathbb{Z}^2 \to \mathbb{Z}$

$$h(u) - h(v) = \pm 1$$
, if $u \sim v$.

- $\mathbb{P}(h) = \text{uniform};$
- favour flat points: $\mathbb{P}(h) \propto c^{\# \text{saddle}}$;
- non-symmetric:

$$\mathbb{P}(h) \propto a^{\#\{\nearrow,\swarrow\}} \cdot b^{\#\{\nearrow,\searrow\}} \cdot c^{\# ext{saddle}}$$

Delocalisation: $\operatorname{Var}_n(h(0)) \to \infty$. Expect: $\operatorname{Var}_n(h(0)) \sim \log n \text{ and } \to \operatorname{GFF}$. **Localisation:** $\forall n \quad \operatorname{Var}_n(h(0)) \leq C$.

 \geq **3D time**: localisation expected. [Peled '10]: uniform measure, $d \gg 3$.

1D time:

Random Walk \rightarrow Brownian bridge $\operatorname{Var}_n(h(0)) \sim n$.

 $\textbf{2D time:}\ graph \ homomorphisms \ \mathbb{Z}^2 \to \mathbb{Z}$

$$h(u) - h(v) = \pm 1$$
, if $u \sim v$.

- $\mathbb{P}(h) = \text{uniform};$
- favour *flat points*: $\mathbb{P}(h) \propto c^{\# \text{saddle}}$;
- non-symmetric:

$$\mathbb{P}(h) \propto a^{\#\{\nearrow,\swarrow\}} \cdot b^{\#\{\nearrow,\searrow\}} \cdot c^{\# ext{saddle}}$$

Delocalisation: $\operatorname{Var}_n(h(0)) \to \infty$. Expect: $\operatorname{Var}_n(h(0)) \sim \log n \text{ and } \to \operatorname{GFF}$.

Localisation: $\forall n \quad \operatorname{Var}_n(h(0)) \leq C$.

 \geq **3D time**: localisation expected. [Peled '10]: uniform measure, $d \gg 3$.

Simulations: $\mathbb{P}(h) \propto c^{\#\mathrm{saddles}} \ c = 1.8$

Simulations: $\mathbb{P}(h) \propto c^{\# \mathrm{saddles}}$ c = 2

Simulations: $\mathbb{P}(h) \propto c^{\# \mathrm{saddles}}$ c = 2.4

Simulations: $\mathbb{P}(h) \propto c^{\# \mathrm{saddles}}$

Six-vertex model, $a, b \leq c$

Gradient field:

Ice rule: two incoming + two outgoing edges. Six local edge orientations.

$$\mathbb{P}(h) \propto a^{\#\{\searrow, \nwarrow\}} \cdot b^{\#\{\nearrow, \swarrow\}} \cdot c^{\# \text{saddle}}$$

Prop (positive association: FKG inequality)

Let $a, b \leq c$. Then, for any increasing F, G,

 $\mathbb{E}(F(h) \cdot G(h)) \geq \mathbb{E}(F(h)) \cdot \mathbb{E}(G(h)).$

[Fortuin-Kasteleyn-Ginibre'72], [Benjamini-Haggström-Mossel'00]

Background

• free energy computation

[Yang-Yang '66], [Sutherland '67], [Lieb '67]

Background

- free energy computation [Yang-Yang '66], [Sutherland '67], [Lieb '67]
- dimers \rightarrow GFF: $a^2 + b^2 = c^2$ [Kenyon'00]
- ε-interacting dimers → GFF
 [Giuliani–Mastropietro–Toninelli'14]

Background

- free energy computation [Yang-Yang '66], [Sutherland '67], [Lieb '67]
- dimers \rightarrow GFF: $a^2 + b^2 = c^2$ [Kenyon'00]
- ε-interacting dimers → GFF
 [Giuliani–Mastropietro–Toninelli'14]
- Localisation: a + b < c[Duminil-Copin-Gagnebin-Harel-Manolescu-Tassion'16], [Ray-Spinka'19],[G.-Peled'19]
- log-Delocalisation: a = b ≤ c ≤ a + b [Lis'20],
 [Duminil-Copin-Karrila-Manolescu-Oulamara'20]
- Rotational invariance: $\sqrt{a^2 + b^2 + ab} \le c \le a + b$ [Duminil-Copin-Kozlowski-Krachun-Manolescu-

Oulamara'20]

Result and main ideas

Theorem (G.–Lammers '23)

Delocalisation for all $a, b \le c \le a + b$. If a = b: log-delocalisation.

Still open: log-bound when $a \neq b$.

Result and main ideas

Theorem (G.-Lammers '23)

Delocalisation for all $a, b \le c \le a + b$. If a = b: log-delocalisation.

Still open: log-bound when $a \neq b$.

Main ideas:

- spin representation mod 4 (aka Ashkin–Teller) [Rys'63];
- two representations + duality [Lis'19];
- joint FKG inequality: spins + edges (aka [Lammers-Ott'21]);
- ergodicity, non-coexistence theorem [Zhang'90s], [Sheffield'05];
- T-circuit argument [G.–Peled'19]: no half-ordered measures
- log-bound: dichotomy [G.-Manolescu'18].

Lipschitz functions; loop O(n) model at n = 2

 $h: \operatorname{Faces}(\operatorname{Hex}) \to \mathbb{Z}$, so that $h(u) - h(v) \in \{0, \pm 1\}$ if $u \sim v$. Measure:

 $\mathbb{P}(h) \propto x^{\#\{u \sim v \colon h(u) \neq h(v)\}} \quad \Rightarrow \quad \mathbb{P}(\text{level lines}) \propto 2^{\#\text{loops}} x^{\#\text{edges}}$

[Duminil-Copin–G.–Peled–Spinka'17], [G., Manolescu'18]: Localisation for $0 < x < 1/\sqrt{3} + \varepsilon$. log-Delocalisation at $x = 1/\sqrt{2}$ and x = 1.

Lipschitz functions; loop O(n) model at n = 2

 $h: \operatorname{Faces}(\operatorname{Hex}) \to \mathbb{Z}$, so that $h(u) - h(v) \in \{0, \pm 1\}$ if $u \sim v$. Measure:

 $\mathbb{P}(h) \propto x^{\#\{u \sim v \colon h(u) \neq h(v)\}} \quad \Rightarrow \quad \mathbb{P}(\text{level lines}) \propto 2^{\#\text{loops}} x^{\#\text{edges}}$

[Duminil-Copin–G.–Peled–Spinka'17], [G., Manolescu'18]: Localisation for $0 < x < 1/\sqrt{3} + \varepsilon$. log-Delocalisation at $x = 1/\sqrt{2}$ and x = 1.

Theorem (G.-Lammers '23)

log-Delocalisation for all $1/\sqrt{2} \le x \le 1$.

Lipschitz functions; loop O(n) model at n = 2

 $h: \operatorname{Faces}(\operatorname{Hex}) \to \mathbb{Z}$, so that $h(u) - h(v) \in \{0, \pm 1\}$ if $u \sim v$. Measure:

 $\mathbb{P}(h) \propto x^{\#\{u \sim v \colon h(u) \neq h(v)\}} \quad \Rightarrow \quad \mathbb{P}(\text{level lines}) \propto 2^{\#\text{loops}} x^{\#\text{edges}}$

[Duminil-Copin–G.–Peled–Spinka'17], [G., Manolescu'18]: Localisation for $0 < x < 1/\sqrt{3} + \varepsilon$. log-Delocalisation at $x = 1/\sqrt{2}$ and x = 1.

Random-cluster model: continuity of the phase transition

Rectangular lattice \mathbb{L} , $p_v, p_h \in (0, 1)$, q > 0. Box $\Lambda_n = (V, E) \subset \mathbb{L}$. For a percolation configuration $\omega \in \{\text{closed}, \text{open}\}^E$,

$$\mathbb{P}_{n}(\omega) \propto p_{v}^{\# \mathsf{open}_{v}} \cdot (1-p_{v})^{\# \mathsf{closed}_{v}} \cdot p_{h}^{\# \mathsf{open}_{h}} \cdot (1-p_{h})^{\# \mathsf{closed}_{h}} \cdot q^{\# \mathsf{clusters}}$$

Random-cluster model: continuity of the phase transition

Rectangular lattice \mathbb{L} , $p_v, p_h \in (0, 1)$, q > 0. Box $\Lambda_n = (V, E) \subset \mathbb{L}$. For a percolation configuration $\omega \in \{\text{closed}, \text{open}\}^E$,

$$\mathbb{P}_n(\omega) \propto p_v^{\# \mathsf{open}_v} \cdot (1-p_v)^{\# \mathsf{closed}_v} \cdot p_h^{\# \mathsf{open}_h} \cdot (1-p_h)^{\# \mathsf{closed}_h} \cdot q^{\# \mathsf{clusters}}.$$

 $q \geq 1$: **FKG** inequality \Rightarrow the weak limit $\mathbb{P}_n \to \mathbb{P}^{\text{free}}$ is well-defined. Also the wired measure: $\mathbb{P}_n(\cdot | \omega|_{\partial \Lambda_n} \equiv \text{open}) \to \mathbb{P}^{\text{wired}}$. Self-dual line of parameters:

$$\tfrac{p_v}{1-p_v}\cdot \tfrac{p_h}{1-p_h}=q.$$

Random-cluster model: continuity of the phase transition

Rectangular lattice \mathbb{L} , $p_v, p_h \in (0, 1)$, q > 0. Box $\Lambda_n = (V, E) \subset \mathbb{L}$. For a percolation configuration $\omega \in \{\text{closed}, \text{open}\}^E$,

$$\mathbb{P}_n(\omega) \propto p_v^{\# \mathsf{open}_v} \cdot (1-p_v)^{\# \mathsf{closed}_v} \cdot p_h^{\# \mathsf{open}_h} \cdot (1-p_h)^{\# \mathsf{closed}_h} \cdot q^{\# \mathsf{clusters}}.$$

 $q \geq 1$: **FKG** inequality \Rightarrow the weak limit $\mathbb{P}_n \to \mathbb{P}^{\text{free}}$ is well-defined. Also the wired measure: $\mathbb{P}_n(\cdot | \omega|_{\partial \Lambda_n} \equiv \text{open}) \to \mathbb{P}^{\text{wired}}$. Self-dual line of parameters:

$$\tfrac{p_v}{1-p_v}\cdot \tfrac{p_h}{1-p_h}=q.$$

Theorem (G.–Lammers '23)

Let $1 \leq q \leq 4$. Then, $\mathbb{P}^{wired} = \mathbb{P}^{free}$. No infinite cluster at the self-dual line.

Not a new result:

[Duminil-Copin–Sidoravicius–Tassion'15], [Duminil-Copin–Li–Manolescu'17] New proof: no use of parafermionic observable, Bethe Ansatz, Yang–Baxter.

Alexander Glazman (University of Innsbruck)

Delocalisation of height functions

Coupled ES^{even} and ES^{odd} edge configurations [Lis'19].

+	+	+	+	+	+	+	+	+
+	-	+	-	+	-	+	+	+
+	+	-	-	-	-	-	+	+
+	-	-	+	-	-	+	+	+
+	+	-	-	-	+	+	+	+
+	+	+	-	+	+	-	+	+
+	-	+	+	+	-	+	+	+
+	+	-	+	-	+	-	+	+
+	+	+	+	+	$^+$	+	+	+

0,	1	0	1	0	1	0,	1	0
1	2	1	2	1	2	1	(<u>0</u>)	1
Õ,	1	2	3	2	3	(2)	1	0
1	2	3	4	3	2	1	0,	1
0 /	1	2	3	2	1	0	1	0
1	0	1	2	1	0	-1,	0	1
0	-1	0	1	0	-17	ιÕ,	1	0
1	ίÕ,	-1	0	-1,	ι Į	·-1 /	0,	1
<u></u> 0 /	1	0	1	ίÔ.	1	ίÔν	1	i Õ

Coupled $\mathrm{ES}^{\mathsf{even}}$ and $\mathrm{ES}^{\mathsf{odd}}$ edge configurations [Lis'19].

+	+	+	+	+	+	+	+	+
+	-	+	-	+	-	+	+	+
+	+	-	-	-	-	-	+	+
+	-	-	+	-	-	+	+	+
+	+	-	Ι	Ι	+	+	+	+
+	+	+	-	+	+	-	+	+
+	-	+	+	+	-	+	+	+
+	+	-	+	-	+	-	+	+

Coupled $\mathrm{ES}^{\mathsf{even}}$ and $\mathrm{ES}^{\mathsf{odd}}$ edge configurations [Lis'19].

+	+	+	+	+	+	+	+	+
+	-	+	-	+	-	+	+	+
+	+	-	-	-	-	-	+	+
+	-	-	+	-	-	+	+	+
+	+	-	Ι	Ι	+	+	+	+
+	+	+	-	+	+	-	+	+
+	-	+	+	+	-	+	+	+
+	+	-	+	-	+	-	+	+
+	+	+	+	+	$^{+}$	$^{+}$	+	+

$$\xrightarrow{-} + + = a = c \cdot \frac{a}{c} = \xrightarrow{+} + + + +$$

even edges decouple odd spins: circuits are domain Markov

Coupled $\mathrm{ES}^{\mathsf{even}}$ and $\mathrm{ES}^{\mathsf{odd}}$ edge configurations [Lis'19].

Super-duality: $(ES^{even})^* \subseteq ES^{odd}$ if $c \le a + b$. Goal: find ∞ many circuits of ES^{even} and ES^{odd} .

Coupled $\mathrm{ES}^{\mathsf{even}}$ and $\mathrm{ES}^{\mathsf{odd}}$ edge configurations [Lis'19].

Super-duality: $(ES^{even})^* \subseteq ES^{odd}$ if $c \leq a + b$. Goal: find ∞ many circuits of ES^{even} and ES^{odd} .

Alexander Glazman (University of Innsbruck)

Coupled $\mathrm{ES}^{\mathsf{even}}$ and $\mathrm{ES}^{\mathsf{odd}}$ edge configurations [Lis'19].

even edges decouple odd spins: circuits are domain Markov

Super-duality: $(ES^{even})^* \subseteq ES^{odd}$ if $c \le a + b$. Goal: find ∞ many circuits of ES^{even} and ES^{odd} .

Alexander Glazman (University of Innsbruck)

Step 2: joint FKG property

Spin config.: σ^{even} and σ^{odd} . Edge config.: ES^{even} and ES^{odd}. Note: $\sigma^{\text{even}} \equiv \text{const}$ on clusters of ES^{even}. Define: ES^{even+} \sqcup ES^{even+} = ES^{even}.

Step 2: joint FKG property

Spin config.: σ^{even} and σ^{odd} . Edge config.: ES^{even} and ES^{odd}. Note: $\sigma^{\text{even}} \equiv \text{const}$ on clusters of ES^{even}. Define: ES^{even+} \sqcup ES^{even-} = ES^{even}.

Prop (G.-Lammers '23)

Let $a, b \leq c$. The triple ($\sigma^{even}, ES^{even+}, -ES^{even-}$) satisfies the FKG inequality:

 $\mathbb{E}[F(\sigma^{even}, \mathrm{ES}^{even}) \cdot G(\sigma^{even}, \mathrm{ES}^{even})] \geq \mathbb{E}[F(\sigma^{even}, \mathrm{ES}^{even})] \cdot \mathbb{E}[G(\sigma^{even}, \mathrm{ES}^{even})],$

for any F, G increasing in σ^{even} and ES^{even+} and decreasing in ES^{even-} .

[Lis'19], [Ray–Spinka'19], [G.–Peled'19]: same for σ^{even} only.

Step 2: joint FKG property

Spin config.: σ^{even} and σ^{odd} . Edge config.: ES^{even} and ES^{odd}. Note: $\sigma^{\text{even}} \equiv \text{const}$ on clusters of ES^{even}. Define: ES^{even+} \sqcup ES^{even+} = ES^{even}.

Prop (G.-Lammers '23)

Let $a, b \leq c$. The triple $(\sigma^{even}, ES^{even+}, -ES^{even-})$ satisfies the FKG inequality:

 $\mathbb{E}[F(\sigma^{even}, \mathrm{ES}^{even}) \cdot G(\sigma^{even}, \mathrm{ES}^{even})] \geq \mathbb{E}[F(\sigma^{even}, \mathrm{ES}^{even})] \cdot \mathbb{E}[G(\sigma^{even}, \mathrm{ES}^{even})],$

for any F, G increasing in σ^{even} and ES^{even+} and decreasing in ES^{even-} .

[Lis'19], [Ray–Spinka'19], [G.–Peled'19]: same for σ^{even} only.

Proof.

- FKG for (ES^{even+}, -ES^{even-}) is satisfied by $\mathbb{P}^{\sigma} := \mathbb{P}(\cdot | \sigma^{\text{even}} = \sigma);$
- the law of (ES^{even+}, -ES^{even-}) under \mathbb{P}^{σ} is \nearrow in σ ;

Circuits of $\mathrm{ES}^{\mathsf{even}+}$ are **domain Markov**: for $\Omega \subset \Lambda$,

$$\mathbb{P}_{\Lambda}(\cdot \mid \partial \Omega \subseteq \mathrm{ES}^{\mathsf{even}+}) = \mathbb{P}_{\Omega}(\cdot \mid \sigma^{\mathsf{even}}|_{\partial \Omega} \equiv +) =: \mathbb{P}_{\Omega}^{+}.$$

Maximal boundary conditions wrt ($\sigma^{\text{even}}, \text{ES}^{\text{even}+}, -\text{ES}^{\text{even}-}$).

Circuits of $\mathrm{ES}^{\mathsf{even}+}$ are **domain Markov**: for $\Omega \subset \Lambda$,

$$\mathbb{P}_{\Lambda}(\cdot \mid \ \partial \Omega \subseteq \mathrm{ES}^{\mathsf{even}+}) = \mathbb{P}_{\Omega}(\cdot \mid \ \sigma^{\mathsf{even}}|_{\partial \Omega} \equiv +) =: \mathbb{P}_{\Omega}^{+}.$$

Maximal boundary conditions wrt ($\sigma^{\text{even}}, \text{ES}^{\text{even}+}, -\text{ES}^{\text{even}-}$).

Take μ_{Ω}^+ : marginal of \mathbb{P}_{Ω}^+ on ($\sigma^{\text{even}}, \text{ES}^{\text{even}+}, -\text{ES}^{\text{even}-}$). \Rightarrow monotonicity in Ω : $\mu_{\Omega}^+ \searrow$ (stochastically) as $\Omega \nearrow \mathbb{Z}^2$. \Rightarrow weak limit $\mu_{\Omega}^+ \searrow \mu^+$ exists, is ergodic and tail trivial.

Circuits of $\mathrm{ES}^{\mathsf{even}+}$ are **domain Markov**: for $\Omega \subset \Lambda$,

$$\mathbb{P}_{\Lambda}(\cdot \mid \ \partial \Omega \subseteq \operatorname{ES}^{\operatorname{even}+}) = \mathbb{P}_{\Omega}(\cdot \mid \ \sigma^{\operatorname{even}}|_{\partial \Omega} \equiv +) =: \mathbb{P}_{\Omega}^{+}.$$

Maximal boundary conditions wrt ($\sigma^{\text{even}}, \text{ES}^{\text{even}+}, -\text{ES}^{\text{even}-}$).

Take μ_{Ω}^+ : marginal of \mathbb{P}_{Ω}^+ on ($\sigma^{\text{even}}, \text{ES}^{\text{even}+}, -\text{ES}^{\text{even}-}$). \Rightarrow monotonicity in Ω : $\mu_{\Omega}^+ \searrow$ (stochastically) as $\Omega \nearrow \mathbb{Z}^2$. \Rightarrow weak limit $\mu_{\Omega}^+ \searrow \mu^+$ exists, is **ergodic** and **tail trivial**.

Upgrade the convergence to include σ^{odd} (~ *Ising model from the FK-Ising*):

- sample \mathbb{P}^+_{Ω} from μ^+_{Ω} : assign \pm to clusters of $(\mathrm{ES}^{\mathrm{even}})^* \sim 1/2$ independently;
- **2** define \mathbb{P}^+ given μ^+ : same as above;
- **(Burton–Keane argument)** use uniqueness of the infinite cluster in $(ES^{even})^*$ (Burton–Keane argument).

Circuits of $\mathrm{ES}^{\mathsf{even}+}$ are **domain Markov**: for $\Omega \subset \Lambda$,

$$\mathbb{P}_{\Lambda}(\cdot \mid \ \partial \Omega \subseteq \operatorname{ES}^{\operatorname{even}+}) = \mathbb{P}_{\Omega}(\cdot \mid \ \sigma^{\operatorname{even}}|_{\partial \Omega} \equiv +) =: \mathbb{P}_{\Omega}^{+}.$$

Maximal boundary conditions wrt ($\sigma^{\text{even}}, \text{ES}^{\text{even}+}, -\text{ES}^{\text{even}-}$).

Take μ_{Ω}^+ : marginal of \mathbb{P}_{Ω}^+ on ($\sigma^{\text{even}}, \text{ES}^{\text{even}+}, -\text{ES}^{\text{even}-}$). \Rightarrow monotonicity in Ω : $\mu_{\Omega}^+ \searrow$ (stochastically) as $\Omega \nearrow \mathbb{Z}^2$. \Rightarrow weak limit $\mu_{\Omega}^+ \searrow \mu^+$ exists, is ergodic and tail trivial.

Upgrade the convergence to include σ^{odd} (~ *Ising model from the FK-Ising*):

- sample \mathbb{P}^+_{Ω} from μ^+_{Ω} : assign \pm to clusters of $(\mathrm{ES}^{\mathrm{even}})^* \sim 1/2$ independently;
- **2** define \mathbb{P}^+ given μ^+ : same as above;
- use uniqueness of the infinite cluster in (ES^{even})* (Burton-Keane argument).

NB: so far no ergodicity in $(\sigma^{\text{odd}}, \text{ES}^{\text{odd}})!$ Need to rule out an infinite cluster in $(\text{ES}^{\text{even}})^*$.

Theorem (Zhang'90s; Sheffield '05)

If μ is a probability measure on $\{0,1\}^{E(\mathbb{Z}^2)}$ that is FKG and shift invariant, then

 $\mu(\exists unique primal and unique dual infinite clusters) = 0.$

See [Duminil-Copin-Raoufi-Tassion'19] for a short proof.

Theorem (Zhang'90s; Sheffield '05)

If μ is a probability measure on $\{0,1\}^{E(\mathbb{Z}^2)}$ that is FKG and shift invariant, then

 $\mu(\exists unique primal and unique dual infinite clusters) = 0.$

See [Duminil-Copin-Raoufi-Tassion'19] for a short proof. Assume $(ES^{even})^*$ has an infinite cluster. By Burton-Keane and ES^{even} -ergodicity,

 $\mathbb{P}^+((\mathrm{ES}^{\mathrm{even}})^*$ has a unique ∞ cluster) = 1.

Theorem (Zhang'90s; Sheffield '05)

If μ is a probability measure on $\{0,1\}^{E(\mathbb{Z}^2)}$ that is FKG and shift invariant, then

 $\mu(\exists unique primal and unique dual infinite clusters) = 0.$

See [Duminil-Copin-Raoufi-Tassion'19] for a short proof. Assume $(ES^{even})^*$ has an infinite cluster. By Burton-Keane and ES^{even} -ergodicity,

 $\mathbb{P}^+((\mathrm{ES}^{\mathsf{even}})^* \text{ has a unique } \infty \text{ cluster}) = 1.$

 $c \leq a + b$: super-duality (ES^{even})* \subseteq ES^{odd} & comparison of bdry conditions give

 $\mathbb{P}^+(\mathrm{ES}^{\mathsf{odd}} \text{ has an } \infty \text{ cluster}) \geq \mathbb{P}^+(\mathrm{ES}^{\mathsf{odd}} \text{ has an } \infty \text{ cluster}) = 1.$

Theorem (Zhang'90s; Sheffield '05)

If μ is a probability measure on $\{0,1\}^{E(\mathbb{Z}^2)}$ that is FKG and shift invariant, then

 $\mu(\exists unique primal and unique dual infinite clusters) = 0.$

See [Duminil-Copin-Raoufi-Tassion'19] for a short proof. Assume $(ES^{even})^*$ has an infinite cluster. By Burton-Keane and ES^{even} -ergodicity,

 $\mathbb{P}^+((\mathrm{ES}^{\mathsf{even}})^* \text{ has a unique } \infty \text{ cluster}) = 1.$

 $c \leq a + b$: super-duality (ES^{even})* \subseteq ES^{odd} & comparison of bdry conditions give

 $\mathbb{P}^+(\mathrm{ES}^{\mathsf{odd}} \text{ has an } \infty \text{ cluster}) \geq \mathbb{P}^+(\mathrm{ES}^{\mathsf{odd}} \text{ has an } \infty \text{ cluster}) = 1.$

However, by the **non-coexistence**, $\mathbb{P}^+(\mathbf{ES}^{even}$ has an ∞ cluster) = 0. This contradicts the red/blue symmetry. Hence, \mathbb{P}^+ is ergodic.

Recall our goal: circuits in ES^{even} (done!) and ES^{odd} (not yet).

Recall our goal: circuits in $\mathrm{ES}^{\mathsf{even}}$ (done!) and $\mathrm{ES}^{\mathsf{odd}}$ (not yet). Assume $\mathrm{ES}^{\mathsf{even}}$ percolates under \mathbb{P}^+ . Sample heights:

- height 0 on the unique infinite cluster of ES^{even} ;
- **2** Simple Random Walk on alternating circuits of ES^{odd} and ES^{even} .

Let HF^0 be its law. Define HF^1 in a similar way using \mathbb{P}^+ .

Last nail: T-circuits

Recall our goal: circuits in $\mathrm{ES}^{\mathsf{even}}$ (done!) and $\mathrm{ES}^{\mathsf{odd}}$ (not yet). Assume $\mathrm{ES}^{\mathsf{even}}$ percolates under \mathbb{P}^+ . Sample heights:

- height 0 on the unique infinite cluster of $\mathrm{ES}^{\mathrm{even}}$;
- \bigcirc Simple Random Walk on alternating circuits of ES^{odd} and ES^{even}.
- Let HF^0 be its law. Define HF^1 in a similar way using \mathbb{P}^+ . We now show

 $HF^0 \succeq HF^1$ [then also $HF^0 \succeq HF^4 = HF^0 + 4$, contradiction].

Define \mathbb{T} -connectivity on $(\mathbb{Z}^2)^{\text{even}}$: $(i,j) \sim (i \pm 1, j \pm 1), (\mathbf{i} \pm 2, \mathbf{j}).$

Recall our goal: circuits in $\mathrm{ES}^{\mathsf{even}}$ (done!) and $\mathrm{ES}^{\mathsf{odd}}$ (not yet). Assume $\mathrm{ES}^{\mathsf{even}}$ percolates under \mathbb{P}^+ . Sample heights:

- height 0 on the unique infinite cluster of ES^{even} ;
- \bigcirc Simple Random Walk on alternating circuits of ES^{odd} and ES^{even}.

Let HF^0 be its law. Define HF^1 in a similar way using \mathbb{P}^+ . We now show

 $\mathsf{HF}^{0} \succeq \mathsf{HF}^{1}$ [then also $\mathsf{HF}^{0} \succeq \mathsf{HF}^{4} = \mathsf{HF}^{0} + 4$, contradiction]. Define \mathbb{T} -connectivity on $(\mathbb{Z}^{2})^{\mathsf{even}}$: $(i, j) \sim (i \pm 1, j \pm 1), (\mathbf{i} \pm 2, \mathbf{j}).$

13/16

Recall our goal: circuits in $\mathrm{ES}^{\mathsf{even}}$ (done!) and $\mathrm{ES}^{\mathsf{odd}}$ (not yet). Assume $\mathrm{ES}^{\mathsf{even}}$ percolates under \mathbb{P}^+ . Sample heights:

- height 0 on the unique infinite cluster of ES^{even} ;
- \bigcirc Simple Random Walk on alternating circuits of ES^{odd} and ES^{even}.

Let HF^0 be its law. Define HF^1 in a similar way using \mathbb{P}^+ . We now show

 $HF^0 \succeq HF^1$ [then also $HF^0 \succeq HF^4 = HF^0 + 4$, contradiction].

Define T-connectivity on $(\mathbb{Z}^2)^{\text{even}}$: $(i,j) \sim (i \pm 1, j \pm 1), (\mathbf{i} \pm 2, \mathbf{j}).$ **Non-coexistence** $\{h \ge 2\}$ vs $\{h \le 0\}$ under HF¹: ∞ many $\mathbb{T}_{\le 0}$ -circuits.

Recall our goal: circuits in $\mathrm{ES}^{\mathsf{even}}$ (done!) and $\mathrm{ES}^{\mathsf{odd}}$ (not yet). Assume $\mathrm{ES}^{\mathsf{even}}$ percolates under \mathbb{P}^+ . Sample heights:

- height 0 on the unique infinite cluster of ES^{even} ;
- **2** Simple Random Walk on alternating circuits of ES^{odd} and ES^{even} .
- Let HF^0 be its law. Define HF^1 in a similar way using \mathbb{P}^+ . We now show

 $HF^{0} \succeq HF^{1}$ [then also $HF^{0} \succeq HF^{4} = HF^{0} + 4$, contradiction].

Define T-connectivity on $(\mathbb{Z}^2)^{\text{even}}$: $(i, j) \sim (i \pm 1, j \pm 1), (\mathbf{i} \pm 2, \mathbf{j}).$ **Non-coexistence** $\{h \ge 2\}$ vs $\{h \le 0\}$ under HF¹: ∞ many $\mathbb{T}_{\le 0}$ -circuits.

Sample $h^1 \sim HF^1$. Find the exterior-most $\mathbb{T}_{\leq 0}$ -circuit.

Recall our goal: circuits in $\mathrm{ES}^{\mathsf{even}}$ (done!) and $\mathrm{ES}^{\mathsf{odd}}$ (not yet). Assume $\mathrm{ES}^{\mathsf{even}}$ percolates under \mathbb{P}^+ . Sample heights:

- height 0 on the unique infinite cluster of ES^{even} ;
- **2** Simple Random Walk on alternating circuits of ES^{odd} and ES^{even} .

Let HF^0 be its law. Define HF^1 in a similar way using $\mathbb{P}^+.$ We now show

 $HF^{0} \succeq HF^{1}$ [then also $HF^{0} \succeq HF^{4} = HF^{0} + 4$, contradiction].

Define T-connectivity on $(\mathbb{Z}^2)^{\text{even}}$: $(i, j) \sim (i \pm 1, j \pm 1), (\mathbf{i} \pm 2, \mathbf{j}).$ **Non-coexistence** $\{h \ge 2\}$ vs $\{h \le 0\}$ under HF¹: ∞ many $\mathbb{T}_{\le 0}$ -circuits.

Sample $h^1 \sim HF^1$. Find the exterior-most $\mathbb{T}_{\leq 0}$ -circuit. Outside define:

$$h^{0}(i,j) := 1 - h^{1}(i-1,j) \sim \mathsf{HF}^{1}.$$

Conditioned on the exterior of the circuit:

 $HF^0 \succeq HF^1$ in the interior.

$h \mod 4$	0	1	2	3
red spin		•	\bigcirc	\bigcirc
blue spin	•	Θ	\bigcirc	•

$h \mod 4$	0	1	2	3
red spin		•	\bigcirc	\bigcirc
blue spin	€	\bigcirc	\bigcirc	•

 $\pmb{\Delta}\mbox{-triangles in (Hex)}^*.$ They form a triangular lattice.

$h \mod 4$	0	1	2	3
red spin		•	\bigcirc	\bigcirc
blue spin	•	\bigcirc	(\mathbf{I})	•

 Δ -triangles in $(Hex)^*$. They form a triangular lattice. Rewrite $\mathbb{P}(h)$:

$h \mod 4$	0	1	2	3
red spin			\bigcirc	\in
blue spin	€	Θ	Θ	€

$$\mathbb{P}(h) \propto x^{\#\{u \sim v \colon h_u \neq h_v\}} = (x^2)^{\#\{uvw \in \Delta \colon h|_{uvw} \neq \text{const}\}}$$
$$= (x^2)^{|\Delta \cap \{\text{red loops}\}|} \cdot (x^2)^{|\Delta \cap \{\text{blue loops}\}|}.$$

 Δ -triangles in $(Hex)^*$. They form a triangular lattice. Rewrite $\mathbb{P}(h)$:

$h \mod 4$	0	1	2	3
red spin			\bigcirc	\in
blue spin	€	\bigcirc	\bigcirc	C

$$\begin{split} \mathbb{P}(h) \propto x^{\#\{u \sim v \colon h_u \neq h_v\}} &= (x^2)^{\#\{uvw \in \Delta \colon h|_{uvw} \neq \text{const}\}} \\ &= (x^2)^{|\Delta \cap \{\text{red loops}\}|} \cdot (x^2)^{|\Delta \cap \{\text{blue loops}\}|}. \end{split}$$

 Δ -triangles in $(Hex)^*$. They form a triangular lattice. Rewrite $\mathbb{P}(h)$:

$h \mod 4$	0	1	2	3
red spin			\bigcirc	\bigcirc
blue spin	•	\bigcirc	\bigcirc	C

$$\begin{split} \mathbb{P}(h) \propto x^{\#\{u \sim v \colon h_u \neq h_v\}} &= (x^2)^{\#\{uvw \in \Delta \colon h|_{uvw} \neq \text{const}\}} \\ &= (x^2)^{|\Delta \cap \{\text{red loops}\}|} \cdot (x^2)^{|\Delta \cap \{\text{blue loops}\}|}. \end{split}$$

 Δ -triangles in (Hex)^{*}. They form a triangular lattice. Rewrite $\mathbb{P}(h)$:

 r^2

$h \mod 4$	0	1	2	3
red spin			\bigcirc	\bigcirc
blue spin	€	\bigcirc	\bigcirc	•

$$\mathbb{P}(h) \propto x^{\#\{u \sim v: h_u \neq h_v\}} = (x^2)^{\#\{uvw \in \Delta: h|_{uvw} \neq \text{const}\}}$$
$$= (x^2)^{|\Delta \cap \{\text{red loops}\}|} \cdot (x^2)^{|\Delta \cap \{\text{blue loops}\}|}.$$

 $\sim x^2$

 Δ -triangles in $(Hex)^*$. They form a triangular lattice. Rewrite $\mathbb{P}(h)$:

$h \mod 4$	0	1	2	3
red spin			\bigcirc	\bigcirc
blue spin	€	\bigcirc	\bigcirc	•

$$\mathbb{P}(h) \propto x^{\#\{u \sim v \colon h_u \neq h_v\}} = (x^2)^{\#\{uvw \in \Delta \colon h|_{uvw} \neq \text{const}\}}$$
$$= (x^2)^{|\Delta \cap \{\text{red loops}\}|} \cdot (x^2)^{|\Delta \cap \{\text{blue loops}\}|}.$$

FKG for $(\sigma, \text{ES}^+, -\text{ES}^-)$. **Super-duality** when $x^2 \ge 1/2$. As before: the limit $\mathbb{P}_n^+ \to \mathbb{P}^+$ is ergodic. **Non-coexistence**: $\{\sigma = +\}$ and $\{\sigma = -\}$ don't percolate. \Rightarrow there are ∞ many blue loops \Rightarrow same for red loops.

[Temperley-Lieb'71], [Baxter-Kelland-Wu'76]

Symmetric:
$$a = b = 1$$
, $p = p_{\rm sd} = \frac{\sqrt{q}}{\sqrt{q}+1}$. Write $\sqrt{q} = 2\cos\lambda$.

$$\mathbb{P}(\omega) \propto
ho^{\# ext{open}} (1-
ho)^{\# ext{closed}} q^{\# ext{clusters}} \propto \sqrt{q}^{\# ext{loops}} = \sum_{ec{\eta} \perp \omega} e^{i\lambda(\circlearrowright - \circlearrowright)}$$
 $\mathbb{P}(h) \propto c^{\# ext{saddles}} = (e^{i\lambda/2} + e^{i\lambda/2})^{\# ext{saddles}} = \sum_{ec{\eta} \perp h} e^{i\lambda(\curvearrowleft - \curvearrowleft)/4}.$

[Temperley-Lieb'71], [Baxter-Kelland-Wu'76]

Symmetric:
$$a = b = 1$$
, $p = p_{sd} = \frac{\sqrt{q}}{\sqrt{q+1}}$. Write $\sqrt{q} = 2 \cos \lambda$.

$$\mathbb{P}(\omega) \propto p^{\# ext{open}} (1-p)^{\# ext{closed}} q^{\# ext{clusters}} \propto \sqrt{q}^{\# ext{loops}} = \sum_{ec{\eta} \perp \omega} e^{i\lambda(\circlearrowleft - \circlearrowright)} \mathbb{P}(h) \propto c^{\# ext{saddles}} = (e^{i\lambda/2} + e^{i\lambda/2})^{\# ext{saddles}} = \sum_{ec{\eta} \perp h} e^{i\lambda(\curvearrowleft - \curvearrowleft)/4}.$$

[Temperley-Lieb'71], [Baxter-Kelland-Wu'76]

Symmetric:
$$a = b = 1$$
, $p = p_{sd} = \frac{\sqrt{q}}{\sqrt{q+1}}$. Write $\sqrt{q} = 2 \cos \lambda$.

$$\mathbb{P}(\omega) \propto p^{\# ext{open}} (1-p)^{\# ext{closed}} q^{\# ext{clusters}} \propto \sqrt{q}^{\# ext{loops}} = \sum_{ec{\eta} \perp \omega} e^{i\lambda(\circlearrowleft - \circlearrowright)} \mathbb{P}(h) \propto c^{\# ext{saddles}} = (e^{i\lambda/2} + e^{i\lambda/2})^{\# ext{saddles}} = \sum_{ec{\eta} \perp h} e^{i\lambda(\frown - \circlearrowright)/4}.$$

[Temperley-Lieb'71], [Baxter-Kelland-Wu'76]

Symmetric:
$$a = b = 1$$
, $p = p_{\rm sd} = \frac{\sqrt{q}}{\sqrt{q}+1}$. Write $\sqrt{q} = 2\cos\lambda$.

$$\mathbb{P}(\omega) \propto p^{\# ext{open}} (1-p)^{\# ext{closed}} q^{\# ext{clusters}} \propto \sqrt{q}^{\# ext{loops}} = \sum_{ec{\eta} \perp \omega} e^{i\lambda(\circlearrowright - \circlearrowright)}$$

 $\mathbb{P}(h) \propto c^{\# ext{saddles}} = (e^{i\lambda/2} + e^{i\lambda/2})^{\# ext{saddles}} = \sum_{ec{\eta} \perp h} e^{i\lambda(\curvearrowleft - \curvearrowleft)/4}.$

Same holds with a defect line [Dubédat'11]:

 $\mathbb{E}_{6\mathrm{V}}[e^{i\alpha(h(u)-h(v))}] = \mathbb{E}_{\mathrm{RCM}}[F_{\lambda,\alpha}(\#\mathrm{loops}(u),\#\mathrm{loops}(v))],$

where $F_{\lambda,\alpha}(x,y) = \cos^{x}(\lambda + \alpha) \cdot \cos^{y}(\lambda - \alpha) / \cos^{x+y} \lambda$.

[Temperley-Lieb'71], [Baxter-Kelland-Wu'76]

Symmetric:
$$a = b = 1$$
, $p = p_{\rm sd} = \frac{\sqrt{q}}{\sqrt{q}+1}$. Write $\sqrt{q} = 2\cos\lambda$.

$$\mathbb{P}(\omega) \propto p^{\# \text{open}} (1-p)^{\# \text{closed}} q^{\# \text{clusters}} \propto \sqrt{q}^{\# \text{loops}} = \sum_{\vec{\eta} \perp \omega} e^{i\lambda(\circlearrowleft - \circlearrowright)}$$

 $\mathbb{P}(h) \propto c^{\# \text{saddles}} = (e^{i\lambda/2} + e^{i\lambda/2})^{\# \text{saddles}} = \sum_{\vec{\eta} \perp h} e^{i\lambda(\curvearrowleft - \circlearrowright)/4}.$

Same holds with a defect line [Dubédat'11]:

 $\mathbb{E}_{6\mathrm{V}}[e^{i\alpha(h(u)-h(v))}] = \mathbb{E}_{\mathrm{RCM}}[F_{\lambda,\alpha}(\#\mathrm{loops}(u),\#\mathrm{loops}(v))],$

where $F_{\lambda,\alpha}(x,y) = \cos^{x}(\lambda + \alpha) \cdot \cos^{y}(\lambda - \alpha) / \cos^{x+y} \lambda$. Note: $\lambda \in [0, \pi/3]$. Fix $\alpha = \pi/8 \in (0, \pi/6)$. Then,

$$\mathbb{E}_{6\mathrm{V}}[e^{i\alpha(h(u)-h(v))}] \geq \mathbb{P}_{\mathrm{RCM}}(u \leftrightarrow v).$$

By delocalisation: $\mathbb{E}_{6V}[e^{i\alpha(h(u)-h(v))}] \rightarrow 0$, as $|u-v| \rightarrow \infty$.

Discussion

Summary:

- six-vertex and Lipschitz together;
- 2 RCM: continuity without integrability;
- joint FKG: spins + Edwards-Sokal;
- non-coexistence theorem;
- T-circuit argument;
- Fourier transform of heights \leftrightarrow loops.

Discussion

Summary:

- six-vertex and Lipschitz together;
- RCM: continuity without integrability;
- joint FKG: spins + Edwards–Sokal;
- on-coexistence theorem;
- T-circuit argument;
- Fourier transform of heights \leftrightarrow loops.

Future directions:

- Lipschitz: localisation when $x < 1/\sqrt{2}$?
- 2 Lipschitz functions on \mathbb{Z}^2 ?
- Loop O(n) at $x_c(n)$ without integrability?
- IssW/dichotomy without *pi*/2 rotations: log-deloc when *a* ≠ *b*?
- random-cluster model: q < 1?</p>

