i/2m
 institute for pure \& applied mathematics

Geometry, Statistical Mechanics, and Integrability

March 11 - June 14, 2024

Long Program Schedule

- Opening Day: March 11, 2024
- Geometry, Statistical Mechanics, and Integrability Tutorials: March 12-15, 2024
- Workshop I: Statistical Mechanics and Discrete Geometry: March 25-29, 2024
- Workshop II: Integrability and Algebraic Combinatorics: April 15-19, 2024
- Workshop III: Statistical Mechanics Beyond 2D: May 6-10, 2024
- Workshop IV: Vertex Models: Algebraic and Probabilistic Aspects of Universality: May 20-24, 2024
- Culminating Workshop at Lake Arrowhead: June 9-14, 2024

Organizers

Dmitry Chelkak (Uni of Michigan) Jan de Gier (Univ. Melbourne) Vadim Gorin (UC Berkeley) Richard Kenyon (Yale) Greta Panova (USC)
Sanjay Ramassamy (CNRS)
Marianna Russkikh (Caltech)

Apply before October 11, 2023 at www.ipam.ucla.edu/gsidi2024

Boundary limits for the six-vertex model

Vadim Gorin

UC Berkeley

July, 2023

Six-vertex model

O	H	O	H	O	H	O	H	O		Square grid with O in the
H		H		H		H		H	vertices and H on the edges.	
O	H	O	H	O	H	O	H	O		
H		H		H		H		H		
O	H	O	H	O	H	O	H	O		
H		H		H		H		H		
O	H	O	H	O	H	O	H	O		
H		H		H		H		H		
O	H	O	H	O	H	O	H	O		

Six-vertex model

Six-vertex model

Square grid with O in the vertices and H on the edges.

Take a finite/infinite domain.
Configurations: possible matchings of all atoms inside domain into $\mathrm{H}_{2} \mathrm{O}$ molecules.

Six-vertex model

Square grid with O in the vertices and H on the edges.

Take a finite/infinite domain.
Configurations: possible matchings of all atoms inside domain into $\mathrm{H}_{2} \mathrm{O}$ molecules.

This is square ice model.

Real-world ice has somewhat similar (although 3d) structure.

Residual Entropy of Square Ice

Six-vertex model

Square grid with O in the vertices and H on the edges.

Take a finite/infinite domain.
Configurations: possible matchings of all atoms inside domain into $\mathrm{H}_{2} \mathrm{O}$ molecules.

This is square ice model. Real-world ice has somewhat similar (although 3d) structure.

Published: 25 March 2015
Square ice in graphene nanocapillaries
G. Algara-Siller O. Lehtinen E.C. Wang. R. R. Nair U. Kaiser ${ }^{-1}$, H. A. Wu ${ }^{-1}$ A. K. Geim \& L.V. Grigoneva

Nature 519, 443-445 (2015) \mid Gite this article
43k Accesses $\mid 543$ Citations $\mid 277$ Altmetric \mid Metrics

Published: 23 December 2015
The observation of square ice in graphene questioned
Wu Zheu Kullo Yin Canhui Wang, Yuyang Zhang, Too Xu Albina Borisevich Litao Sun, Juan Carios
Idrobo, Matthew F. Chisholm, Sokrates T. Pantelides, Robert F. Klie \& Andrew R Lupini

Six-vertex model

Square grid with O in the vertices and H on the edges.

Take a finite/infinite domain.
Configurations: possible matchings of all atoms inside domain into $\mathrm{H}_{2} \mathrm{O}$ molecules.

This is square ice model.
Real-world ice has somewhat similar (although 3d) structure.

Also known as the six vertex model.

Gibbs measures

Six positive weights corresponding to types of vertices.

a_{1}
a_{2}
b_{1}
b_{2}
c_{1}
c_{2}

Gibbs measures

Six positive weights corresponding to types of vertices.

a_{1}
a_{2}
b_{1}

b_{2}
c_{1}
c_{2}

Gibbs probability measure on configurations:

$$
\frac{a_{1}^{\#\left(a_{1}\right)} a_{2}^{\#\left(a_{2}\right)} b_{1}^{\#\left(b_{1}\right)} b_{2}^{\#\left(b_{2}\right)} c_{1}^{\#\left(c_{1}\right)} c_{2}^{\#\left(c_{2}\right)}}{Z\left(\Omega ; a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}\right)}
$$

Gibbs measures

Six positive weights corresponding to types of vertices.

a_{1}
a_{2}
b_{1}
b_{2}
c_{1}
c_{2}

Remark. Distribution depends only on $\frac{b_{1} b_{2}}{a_{1} a_{2}}$ and $\frac{c_{1} c_{2}}{a_{1} a_{2}}$.

Gibbs measures

Gibbs probability measure on configurations:

$$
\frac{a_{1}^{\#\left(a_{1}\right)} a_{2}^{\#\left(a_{2}\right)} b_{1}^{\#\left(b_{1}\right)} b_{2}^{\#\left(b_{2}\right)} c_{1}^{\#\left(c_{1}\right)} c_{2}^{\#\left(c_{2}\right)}}{Z\left(\Omega ; a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}\right)}
$$

Remark. Distribution depends only on $\frac{b_{1} b_{2}}{a_{1} a_{2}}$ and $\frac{c_{1} c_{2}}{a_{1} a_{2}}$.

Example. Uniform measure on configurations in a fixed domain is Gibbs with $a_{1}=a_{2}=b_{1}=b_{2}=c_{1}=c_{2}=1$.

Gibbs measures

Example. Uniform measure on configurations in a fixed domain is Gibbs with $a_{1}=a_{2}=b_{1}=b_{2}=c_{1}=c_{2}=1$.

We aim to study asymptotic properties of Gibbs measures.
Domain wall boundary conditions (DWBC) $\begin{array}{rrrcc}\mathrm{H}-\mathrm{O} & \mathrm{H}-\mathrm{O} & \mathrm{H}-\mathrm{O} & \mathrm{H}-\mathrm{O}-\mathrm{H} & \mathrm{O}-\mathrm{H} \\ \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H}\end{array}$

H

Simplest possible domain: $N \times N$ square.

Our setup: (a, b, c)-measure with DWBC.

Symmetric weights:

No loss of generality, because of dependence on $\frac{b_{1} b_{2}}{a_{1} a_{2}}$ and $\frac{c_{1} c_{2}}{a_{1} a_{2}}$.

How does a random configuration look like as $N \rightarrow \infty$?

$$
\Delta=\frac{a^{2}+b^{2}-c^{2}}{2 a b} \text { will play a role. }
$$

$N=200$ simulation by David Keating

Almost nothing in this picture was explained rigorously.

$N=256$ simulation by David Keating

Boundary limits?

- What happens near boundaries as $N \rightarrow \infty$?
- Boundary conditions are seen only through these points.
- By symmetries, it is sufficient to deal with lower boundary.

GUE for all $\Delta<1$

Theorem. (Gorin-Liechty-23) For $\Delta<1$ the probability that there are precisely k horizontal molecules in line k tends to 1 as $N \rightarrow \infty$.

GUE for all $\Delta<1$

Theorem. (Gorin-Liechty-23) For $\Delta<1$, the positions of horizontal molecules in line k, after subtracting $\mathfrak{m}(a, b, c) N$ and dividing by $\mathfrak{s}(a, b, c) \sqrt{N}$, converge in distribution to the eigenvalues of $k \times k$ matrix of Gaussian Unitary Ensemble.

Eigenvalues of $\frac{X+X^{*}}{2}$.
$\longrightarrow X=k \times k$ matrix with i.i.d.
$\mathcal{N}(0,1)+\mathbf{i} \mathcal{N}(0,1)$
elements.

- Horizontal molecules uniquely fix all others.
- Corollary: The first k rows \rightarrow GUE-corners process.

GUE for all $\Delta<1$

Theorem. (Gorin-Liechty-23) For $\Delta<1$, the positions of horizontal molecules in line k, after subtracting $\mathfrak{m}(a, b, c) N$ and dividing by $\mathfrak{s}(a, b, c) \sqrt{N}$, converge in distribution to the eigenvalues of $k \times k$ matrix of Gaussian Unitary Ensemble.

Eigenvalues of $\frac{X+X^{*}}{2}$.
$\longrightarrow X=k \times k$ matrix with i.i.d.
$\mathcal{N}(0,1)+\mathbf{i} \mathcal{N}(0,1)$
elements.

- Horizontal molecules uniquely fix all others.
- Corollary: The first k rows \rightarrow GUE-corners process.
- Previous results:

1. $\Delta=0$: [Johansson-Nordenstam-06] through domino tilings.
2. $a=b=c=1$: [Gorin-Panova-15] through Schur functions.

GUE for all $\Delta<1$

Theorem. (Gorin-Liechty-23) For $\Delta<1$, the positions of horizontal molecules in line k, after subtracting $\mathfrak{m}(a, b, c) N$ and dividing by $\mathfrak{s}(a, b, c) \sqrt{N}$, converge in distribution to the eigenvalues of $k \times k$ matrix of Gaussian Unitary Ensemble.

$$
\begin{aligned}
& |\Delta|<1: a=\sin (\gamma-t), b=\sin (\gamma+t), c=\sin (2 \gamma),|t|<\gamma<\pi / 2 \\
& \mathfrak{m}(a, b, c)=\frac{\cot (\gamma+t)+\frac{\pi}{2 \gamma} \tan \left(\frac{\pi t}{2 \gamma}\right)}{\cot (\gamma-t)+\cot (\gamma+t)}, \quad \mathfrak{s}(a, b, c)=\frac{\sin (\gamma-t) \sin (\gamma+t)}{\sin (2 \gamma)} \times \\
& \times \sqrt{\frac{2}{3}\left(\frac{\pi^{2}}{4 \gamma^{2}}-1\right)-\left(\cot (\gamma-t)-\frac{\pi}{2 \gamma} \tan \left(\frac{\pi t}{2 \gamma}\right)\right)\left(\cot (\gamma+t)+\frac{\pi}{2 \gamma} \tan \left(\frac{\pi t}{2 \gamma}\right)\right)}
\end{aligned}
$$

GUE for all $\Delta<1$

Theorem. (Gorin-Liechty-23) For $\Delta<1$, the positions of horizontal molecules in line k, after subtracting $\mathfrak{m}(a, b, c) N$ and dividing by $\mathfrak{s}(a, b, c) \sqrt{N}$, converge in distribution to the eigenvalues of $k \times k$ matrix of Gaussian Unitary Ensemble.

$$
\begin{gathered}
|\Delta|<1: a=\sin (\gamma-t), b=\sin (\gamma+t), c=\sin (2 \gamma),|t|<\gamma<\pi / 2 \\
\mathfrak{m}(a, b, c)=\frac{\cot (\gamma+t)+\frac{\pi}{2 \gamma} \tan \left(\frac{\pi t}{2 \gamma}\right)}{\cot (\gamma-t)+\cot (\gamma+t)}, \quad \mathfrak{s}(a, b, c)=\frac{\sin (\gamma-t) \sin (\gamma+t)}{\sin (2 \gamma)} \times \sqrt{\frac{2}{3}\left(\frac{\pi^{2}}{4 \gamma^{2}}-1\right)-\left(\cot (\gamma-t)-\frac{\pi}{2 \gamma} \tan \left(\frac{\pi t}{2 \gamma}\right)\right)\left(\cot (\gamma+t)+\frac{\pi}{2 \gamma} \tan \left(\frac{\pi t}{2 \gamma}\right)\right)} . \\
\Delta<-1: a=\sinh (\gamma-t), b=\sinh (\gamma+t), c=\sinh (2 \gamma),|t|<\gamma \\
\mathfrak{m}(a, b, c)=\frac{\operatorname{coth}(\gamma+t)-\frac{\pi}{2 \gamma} \frac{\vartheta_{2}^{\prime}\left(\frac{\pi t}{2 \gamma}\right)}{\vartheta_{2}\left(\frac{\pi t}{2 \gamma}\right)}}{\operatorname{coth}(\gamma-t)+\operatorname{coth}(\gamma+t)}, \quad \mathfrak{s}(a, b, c)=\frac{\sinh (\gamma-t) \sinh (\gamma+t)}{\sinh (2 \gamma)} \times
\end{gathered}
$$

$$
\begin{gathered}
\times \sqrt{\frac{2}{3}-\frac{\pi^{2}}{12 \gamma^{2}}\left(\frac{\vartheta_{2}^{\prime}\left(\frac{\pi t}{2 \gamma}\right)}{\vartheta_{2}\left(\frac{\pi t}{2 \gamma}\right)}\right)^{2}+\frac{\pi^{2}}{12 \gamma^{2}} \sum_{j=1}^{4}\left(\frac{\vartheta_{j}^{\prime}(\omega)}{\vartheta_{j}(\omega)}\right)^{2}-\frac{\pi(\operatorname{coth}(\gamma+t)-\operatorname{coth}(\gamma-t))}{2 \gamma} \frac{\vartheta_{2}^{\prime}\left(\frac{\pi t}{2 \gamma}\right)}{\vartheta_{2}\left(\frac{\pi t}{2 \gamma}\right)}-\operatorname{coth}(\gamma+t) \operatorname{coth}(\gamma-t)} \\
\omega=\frac{\pi(1+t / \gamma)}{4}, \quad \vartheta_{1}, \vartheta_{2}, \vartheta_{3}, \vartheta_{4}=\text { Jacobi elliptic theta functions with nome } q=e^{-\pi^{2} /\left(\frac{2}{2} \gamma\right)} . \quad \equiv
\end{gathered}
$$

$\Delta>1: N=256$ simulation by David Keating

 Is $\Delta<1$ just a technical restriction?
$\Delta>1: N=256$ simulation by David Keating

 Is $\Delta<1$ just a technical restriction? No!$$
\begin{aligned}
& a=3 \\
& b=1 \\
& c=1 \\
& \Delta=\frac{3}{2}
\end{aligned}
$$

only c-vertices shown

$\Delta>1$: stochastic six-vertex model.

Theorem. (Gorin-Liechty-23) For $\Delta>1$ and $a>b$, as $N \rightarrow \infty$ the configuration converges near the bottom-left corner to the stochastic six-vertex model without any rescaling.

(Complementary $a<b$ case is obtained by a vertical flip.)

Stochastic six-vertex model.

$$
a_{1}=a_{2}=1, \quad b_{1}+c_{1}=1, \quad b_{2}+c_{2}=1
$$

Remark. This implies $\Delta=\frac{a_{1} a_{2}+b_{1} b_{2}-c_{1} c_{2}}{2 \sqrt{a_{1} a_{2} b_{1} b_{2}}} \geq 1$.
The model in quadrant defined by local sampling algorithm.

Stochastic six-vertex model.

$$
a_{1}=a_{2}=1, \quad b_{1}+c_{1}=1, \quad b_{2}+c_{2}=1 .
$$

The model in quadrant defined by local sampling algorithm.
$4 \begin{array}{lllllllllll}4 & \mathrm{H} & \mathrm{O} & \mathrm{H} & \mathrm{O} & \mathrm{H} & \mathrm{O} & \mathrm{H} & \mathrm{O} & \mathrm{H} & \mathrm{O}\end{array}$

H	H	H	H	H

$\begin{array}{lllllllllll}3 & \mathrm{H} & \mathrm{O} & \mathrm{H} & \text { O } & \text { H } & \text { O } & \text { H } & \text { O } & \text { H } & \text { O }\end{array}$

H	H	H	H	H

$2 \begin{array}{lllllllllll}2 & \text { H } & \text { O } & \text { H } & \text { O } & \text { H } & \text { O } & \text { H } & \text { O } & \text { H } & \text { O }\end{array}$
$\begin{array}{lllll}\mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H}\end{array}$
$1 \begin{array}{lllllllllll}1 & \mathrm{H} & \text { O } & \text { H } & \text { O } & \text { H } & \text { O } & \text { H } & \text { O } & \text { H } & \text { O }\end{array}$
$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$

Stochastic six-vertex model.

$$
a_{1}=a_{2}=1, \quad b_{1}+c_{1}=1, \quad b_{2}+c_{2}=1 .
$$

The model in quadrant defined by local sampling algorithm.
$4 \begin{array}{lllllllllll}4 & \mathrm{H} & \mathrm{O} & \mathrm{H} & \mathrm{O} & \mathrm{H} & \mathrm{O} & \mathrm{H} & \mathrm{O} & \mathrm{H} & \mathrm{O}\end{array}$

H	H	H	H	H

$\begin{array}{lllllllllll}3 & \mathrm{H} & \text { O } & \text { H } & \text { O } & \text { H } & \text { O } & \text { H } & \text { O } & \text { H } & \text { O }\end{array}$ $\begin{array}{lllll}\mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H}\end{array}$
$2 \begin{array}{lllllllllll}2 & \mathrm{H} & \text { O } & \text { H } & \text { O } & \text { H } & \text { O } & \text { H } & \text { O } & \text { H } & \text { O }\end{array}$
$1 \begin{array}{lllllllllll} & \begin{array}{lllllllll}\text { H } & & \text { H }\end{array} & \text { H—O—H } \\ \text { H } & \text { O } & \text { H } & \text { O } & \text { H } & \text { O } & \text { H } & \text { O } & \text { H } & \text { O } & c_{1}=1-b_{1}\end{array}$ $\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$

Stochastic six-vertex model.

$$
a_{1}=a_{2}=1, \quad b_{1}+c_{1}=1, \quad b_{2}+c_{2}=1 .
$$

The model in quadrant defined by local sampling algorithm.
$4 \begin{array}{lllllllllll}4 & \mathrm{H} & \mathrm{O} & \mathrm{H} & \mathrm{O} & \mathrm{H} & \mathrm{O} & \mathrm{H} & \mathrm{O} & \mathrm{H} & \mathrm{O}\end{array}$

H	H	H	H	H

$\begin{array}{lllllllllll}3 & \mathrm{H} & \text { O } & \text { H } & \text { O } & \text { H } & \text { O } & \text { H } & \text { O } & \text { H } & \text { O }\end{array}$

$2 \begin{array}{lllllllllll} & \text { H } & \text { O } & \text { H } & \text { O } & \text { H } & \text { O } & \text { H } & \text { O } & \text { H } & \text { O }\end{array}$

$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$

Stochastic six-vertex model.

$$
a_{1}=a_{2}=1, \quad b_{1}+c_{1}=1, \quad b_{2}+c_{2}=1 .
$$

The model in quadrant defined by local sampling algorithm.

Stochastic six-vertex model.

$$
a_{1}=a_{2}=1, \quad b_{1}+c_{1}=1, \quad b_{2}+c_{2}=1 .
$$

The model in quadrant defined by local sampling algorithm.

Stochastic six-vertex model.

$$
a_{1}=a_{2}=1, \quad b_{1}+c_{1}=1, \quad b_{2}+c_{2}=1
$$

The model in quadrant defined by local sampling algorithm.

Stochastic six-vertex model.

$$
a_{1}=a_{2}=1, \quad b_{1}+c_{1}=1, \quad b_{2}+c_{2}=1 .
$$

The model in quadrant defined by local sampling algorithm.

$\mathrm{H}-\mathrm{O}-\mathrm{H}$

$$
c_{1}=1-b_{1}
$$

Stochastic six-vertex model.

$$
a_{1}=a_{2}=1, \quad b_{1}+c_{1}=1, \quad b_{2}+c_{2}=1
$$

The model in quadrant defined by local sampling algorithm.

Stochastic six-vertex model.

$$
a_{1}=a_{2}=1, \quad b_{1}+c_{1}=1, \quad b_{2}+c_{2}=1 .
$$

The model in quadrant defined by local sampling algorithm.

Stochastic six-vertex model.

$$
a_{1}=a_{2}=1, \quad b_{1}+c_{1}=1, \quad b_{2}+c_{2}=1 .
$$

The model in quadrant defined by local sampling algorithm.

```
:
4 H
```



```
    2
1
```



```
O
```



```
H
\[
c_{1}=1-b_{1}
\]
\[
\begin{array}{lllll}
1 & 2 & 3 & 4 & 5
\end{array}
\]
```


Stochastic six-vertex model.

$$
a_{1}=a_{2}=1, \quad b_{1}+c_{1}=1, \quad b_{2}+c_{2}=1 .
$$

The model in quadrant defined by local sampling algorithm.

Stochastic six-vertex model.

$$
a_{1}=a_{2}=1, \quad b_{1}+c_{1}=1, \quad b_{2}+c_{2}=1
$$

The model in quadrant defined by local sampling algorithm.

Stochastic six-vertex model.

$$
a_{1}=a_{2}=1, \quad b_{1}+c_{1}=1, \quad b_{2}+c_{2}=1 .
$$

The model in quadrant defined by local sampling algorithm.

Stochastic six-vertex model is a particle system.

$$
\begin{aligned}
& \text { O-H } \\
& \begin{array}{ccccccc}
\vdots & & & & & \\
\hdashline & \wp & & & & \\
1 & 1 & b_{1} & b_{2} & c_{1} & c_{2}
\end{array} \\
& c_{1}=1-b_{1}, \quad c_{2}=1-b_{2}
\end{aligned}
$$

- Discrete time version of Asymmetric Simple Exclusion Process.

Stochastic six-vertex model is a particle system.

- Discrete time version of Asymmetric Simple Exclusion Process.
- First introduced on torus in [Gwa-Spohn-92].
- $b_{1}>b_{2}$: LLN and fluctuations in [Borodin-Corvin-Gorin-16], [Dimitrov - 23]

Translation-invariant case in [Aggarval-18]

- Small $b_{1}-b_{2}>0$ KPZ-limit in [Corwin-Ghosal-Shen-Tsai-20]
- Small $b_{1}-b_{2}$ stochastic telegraph limit in [Borodin-Gorin-19], [Shen-Tsai-19]

Stochastic six-vertex model is a particle system.

- Discrete time version of Asymmetric Simple Exclusion Process.
- First introduced on torus in [Gwa-Spohn-92].
- $b_{1}>b_{2}$: LLN and fluctuations in [Borodin-Corvin-Gorin-16], [Dimitrov - 23]

Translation-invariant case in [Aggarval-18]

- Small $b_{1}-b_{2}>0$ KPZ-limit in [Corwin-Ghosal-Shen-Tsai-20]
- Small $b_{1}-b_{2}$ stochastic telegraph limit in [Borodin-Gorin-19], [Shen-Tsai-19]
- Stationary regime $b_{1}<b_{2}$ is relevant for DWBC.

$\Delta>1$: stochastic six-vertex model.

Theorem. (Gorin-Liechty-23) For $\Delta>1$ and $a>b$, as $N \rightarrow \infty$ the configuration converges near the bottom-left corner to the stochastic six-vertex model with $0<b_{1}<b_{2}<1$:

$$
b_{1}=\frac{a^{2}+b^{2}-c^{2}-\sqrt{\left(a^{2}+b^{2}-c^{2}\right)^{2}-4 a^{2} b^{2}}}{2 a^{2}}, \quad b_{2}=\frac{a^{2}+b^{2}-c^{2}+\sqrt{\left(a^{2}+b^{2}-c^{2}\right)^{2}-4 a^{2} b^{2}}}{2 a^{2}} .
$$

Special case: c $=0$

$\sigma=41325$

$$
\begin{gathered}
\mathbb{P}(\sigma) \sim\left(\frac{b^{2}}{a^{2}}\right)^{\# \text { inversions }(\sigma)} \\
\Delta=\frac{a^{2}+b^{2}}{2 a b} \geq 1
\end{gathered}
$$

Proposition. Assume $a>b$ and $c=0$. As $n \rightarrow \infty$ the permutation σ converges to q-shuffle of Gnedin and Olshanski: $\sigma(i)$ is $\operatorname{Geom}(q)$ largest element in $\mathbb{N} \backslash\{\sigma(1), \ldots, \sigma(i-1)\}$.

$$
q=\frac{b^{2}}{a^{2}}
$$

General domains

Conjecture. For any $\Delta<1$ and any large polygonal domain near boundaries we always see \sqrt{N} fluctuations and GUE-eigenvalues.

- We proved it for squares.
- [Aggarwal-Gorin-22] An analogue for lozenge tilings \approx five-vertex model.

General domains

Conjecture. For any $\Delta<1$ and any large polygonal domain near boundaries we always see \sqrt{N} fluctuations and GUE-eigenvalues.

- We proved it for squares.
- [Aggarval-Gorin-22] An analogue for lozenge tilings \approx five-vertex model.

Open question. What are all possible boundary limits for $\Delta>1$?

- We found stationary stochastic six-vertex model.
- [Dimitrov-20, Dimitrov-Rychnovsky-22] Some infinite domains \rightarrow GUE.

General domains

Conjecture. For any $\Delta<1$ and any large polygonal domain near boundaries we always see \sqrt{N} fluctuations and GUE-eigenvalues.

O	H	O	H	O	H	O	H	O
H		H		H		H		H
O	H	O	H	O	H	O	H	O
H		H		H		H		H
O	H	O	H	O	H	O	H	O
H		H		H		H		H
O	H	O	H	O	H	O	H	O
H		H		H		H		H
O	H	O	H	O	H	O	H	O

- We proved it for squares.
- [Aggarval-Gorin-22] An analogue for lozenge tilings \approx five-vertex model.

Open question. What are all possible boundary limits for $\Delta>1$?

- We found stationary stochastic six-vertex model.
- [Dimitrov-20, Dimitrov-Rychnovsky-22] Some infinite domains \rightarrow GUE.

What about $\Delta \approx 1$?
Teaser: Good simulations? How?

The simplest case to probe $\Delta \approx 1$.

$$
\sigma=41325
$$ For fixed N send $c \rightarrow 0$ to get the Mallows measure on permutations.

$$
\begin{gathered}
\mathbb{P}(\sigma) \sim\left(\frac{b^{2}}{a^{2}}\right)^{\# \text { inversions }(\sigma)} \\
\Delta=\frac{a^{2}+b^{2}}{2 a b} \geq 1 .
\end{gathered}
$$

Proposition. Set $c=0$, suppose $N \ln \left(\frac{b^{2}}{a^{2}}\right) \rightarrow \theta \in \mathbb{R}$ as $N \rightarrow \infty$. Then the rescaled by N positions of horizontal molecules converge in distribution to i.i.d. truncated exponentials of density

$$
\rho_{\eta}(x)=\frac{\theta}{e^{\theta}-1} e^{\theta x}, \quad x \in[0,1] .
$$

The simplest case to probe $\Delta \approx 1$.

$\sigma=41325$

$$
\begin{gathered}
\mathbb{P}(\sigma) \sim\left(\frac{b^{2}}{a^{2}}\right)^{\# \text { inversions }(\sigma)} \\
\Delta=\frac{a^{2}+b^{2}}{2 a b} \geq 1 .
\end{gathered}
$$

Proposition. Set $c=0$, suppose $N \ln \left(\frac{b^{2}}{a^{2}}\right) \rightarrow \theta \in \mathbb{R}$ as $N \rightarrow \infty$. Then the rescaled by N positions of horizontal molecules converge in distribution to i.i.d. truncated exponentials of density

$$
\rho_{\eta}(x)=\frac{\theta}{e^{\theta}-1} e^{\theta x}, \quad x \in[0,1] .
$$

Conclusion. We expect a rich world of boundary limits for $\Delta \approx 1$.

A glimpse into proofs

Step 1. Introduce row and column dependent vertex weights.

$$
\omega(x, y ; \sigma)=\left\{\begin{array}{l}
a\left(\psi_{y}-\chi_{x}, \gamma\right) \\
b\left(\psi_{y}-\chi_{x}, \gamma\right) \\
c(\gamma)
\end{array}\right.
$$

- Ferroelectric phase. For $\Delta>1$

$$
a(t, \gamma)=\sinh (t-\gamma), \quad b(t, \gamma)=\sinh (t+\gamma), \quad c(\gamma)=\sinh (2 \gamma)
$$

- Disordered phase. For $-1<\Delta<1$

$$
a(t, \gamma)=\sin (\gamma-t), \quad b(t, \gamma)=\sin (\gamma+t), \quad c(\gamma)=\sin (2 \gamma) .
$$

- Antiferroelectric phase. For $\Delta<-1$

$$
a(t, \gamma)=\sinh (\gamma-t), \quad b(t, \gamma)=\sinh (\gamma+t), \quad c(\gamma)=\sinh (2 \gamma) .
$$

- Boundary phase. For $\Delta=-1$,

$$
\begin{aligned}
a(t, \gamma)=\gamma-t, \quad b(t, \gamma) & =\gamma+t, \quad c(\gamma)=2 \gamma \\
\mathcal{Z}_{N}\left(\chi_{1}, \ldots, \chi_{N} ; \psi_{1}, \ldots, \psi_{N} ; \gamma\right) & =\sum_{\sigma} \prod_{x=1}^{N} \prod_{y=1}^{N} \omega(x, y ; \sigma) .
\end{aligned}
$$

A glimpse into proofs

Step 1. Introduce row and column dependent vertex weights.

$$
\omega(x, y ; \sigma)=\left\{\begin{array}{l}
a\left(\psi_{y}-\chi_{x}, \gamma\right) \\
b\left(\psi_{y}-\chi_{x}, \gamma\right) \\
c(\gamma)
\end{array}\right.
$$

$$
\mathcal{Z}_{N}\left(\chi_{1}, \ldots, \chi_{N} ; \psi_{1}, \ldots, \psi_{N} ; \gamma\right)=\sum_{\sigma} \prod_{x=1}^{N} \prod_{y=1}^{N} \omega(x, y ; \sigma)
$$

Step 2. [Izergin, Korepin - 82, 87] Partition function evaluates:

$$
\frac{\prod_{i, j=1}^{N}\left(a\left(\psi_{j}-\chi_{i}, \gamma\right) b\left(\psi_{j}-\chi_{i}, \gamma\right)\right)}{\prod_{i<j}\left(b\left(\chi_{i}-\chi_{j}, 0\right) b\left(\psi_{i}-\psi_{j}, 0\right)\right)} \operatorname{det}\left[\frac{c(\gamma)}{a\left(\psi_{j}-\chi_{i}, \gamma\right) b\left(\psi_{j}-\chi_{i}, \gamma\right)}\right]_{i, j=1}^{N}
$$

Still open: Is there a structural explanation?

A glimpse into proofs

Step 1. Introduce row and column dependent vertex weights.

$$
\omega(x, y ; \sigma)=\left\{\begin{array}{l}
a\left(\psi_{y}-\chi_{x}, \gamma\right) \\
b\left(\psi_{y}-\chi_{x}, \gamma\right) \\
c(\gamma)
\end{array}\right.
$$

$$
\mathcal{Z}_{N}\left(\chi_{1}, \ldots, \chi_{N} ; \psi_{1}, \ldots, \psi_{N} ; \gamma\right)=\sum_{\sigma} \prod_{x=1}^{N} \prod_{y=1}^{N} \omega(x, y ; \sigma)
$$

Step 2. [Izergin, Korepin - 82, 87] Partition function evaluates:

$$
\frac{\prod_{i, j=1}^{N}\left(a\left(\psi_{j}-\chi_{i}, \gamma\right) b\left(\psi_{j}-\chi_{i}, \gamma\right)\right)}{\prod_{i<j}\left(b\left(\chi_{i}-\chi_{j}, 0\right) b\left(\psi_{i}-\psi_{j}, 0\right)\right)} \operatorname{det}\left[\frac{c(\gamma)}{a\left(\psi_{j}-\chi_{i}, \gamma\right) b\left(\psi_{j}-\chi_{i}, \gamma\right)}\right]_{i, j=1}^{N}
$$

Step 3. [Gorin - 14] The boundary limits can be read from

$$
\frac{\mathcal{Z}_{N}\left(0^{N} ; t+\xi_{1}, \ldots, t+\xi_{k}, t^{N-k} ; \gamma\right)}{\mathcal{Z}_{N}\left(0^{N} ; t^{N} ; \gamma\right)}
$$

How do we compute $N \rightarrow \infty$ asymptotics?

A glimpse into proofs

Step 1. $\mathcal{Z}_{N}\left(\chi_{1}, \ldots, \chi_{N} ; \psi_{1}, \ldots, \psi_{N} ; \gamma\right)=\sum_{\sigma} \prod_{x=1}^{N} \prod_{y=1}^{N} \omega(x, y ; \sigma)$.
Step 2. [Izergin, Korepin - 82, 87] Partition function evaluates:
$\frac{\prod_{i, j=1}^{N}\left(a\left(\psi_{j}-\chi_{i}, \gamma\right) b\left(\psi_{j}-\chi_{i}, \gamma\right)\right)}{\prod_{i<j}\left(b\left(\chi_{i}-\chi_{j}, 0\right) b\left(\psi_{i}-\psi_{j}, 0\right)\right)} \operatorname{det}\left[\frac{c(\gamma)}{a\left(\psi_{j}-\chi_{i}, \gamma\right) b\left(\psi_{j}-\chi_{i}, \gamma\right)}\right]_{i, j=1}^{N}$.
Step 3. [Gorin - 14$]$ Need $\frac{\mathcal{Z}_{N}\left(0^{N} ; t+\xi_{1}, \ldots, t+\xi_{k}, t^{N-k} ; \gamma\right)}{\mathcal{Z}_{N}\left(0^{N} ; t^{N} ; \gamma\right)}$
Step 4. [Zinn-Justin - 00] Laplace transform helps:

$$
\frac{c(\gamma)}{a(t, \gamma) b(t, \gamma)}=\int_{-\infty}^{\infty} e^{t \mathrm{x}} \mathfrak{m}(\mathrm{~d} x)
$$

A glimpse into proofs

Theorem. Using multivariate Bessel functions

$$
\mathcal{B}_{x_{1}, \ldots, x_{N}}\left(z_{1}, \ldots, z_{N}\right)=1!2!\cdots(N-1)!\frac{\operatorname{det}\left[e^{x_{i} z_{j}}\right]_{i, j=1}^{N}}{\prod_{1 \leq i<j \leq N}\left(x_{i}-x_{j}\right)\left(z_{i}-z_{j}\right)}
$$

and $\beta=2$ log-gas,

$$
\mathcal{M}^{N, t, \gamma} \sim \prod_{1 \leq i<j \leq N}\left(x_{i}-x_{j}\right)^{2} \prod_{i=1}^{N} e^{t x_{i}} \mathfrak{m}\left(\mathrm{~d} x_{i}\right)
$$

we have

$$
\begin{aligned}
& \frac{\mathcal{Z}_{N}\left(0^{N} ; t+\xi_{1}, \ldots, t+\xi_{k}, t^{N-k} ; \gamma\right)}{\mathcal{Z}_{n}\left(0^{N} ; t^{N} ; \gamma\right)} \\
= & \prod_{j=1}^{k}\left[\left(\frac{a\left(t+\xi_{j}, \gamma\right) b\left(t+\xi_{j}, \gamma\right)}{a(t, \gamma) b(t, \gamma)}\right)^{N}\left(\frac{\xi_{j}}{b\left(\xi_{j}, 0\right)}\right)^{N-k}\right] \prod_{i<j} \frac{\xi_{i}-\xi_{j}}{b\left(\xi_{i}-\xi_{j}, 0\right)} \\
& \quad \times \mathbb{E}_{\mathcal{M}^{N, t, \gamma}}\left[\mathcal{B}_{x_{1}, \ldots, x_{N}}\left(\xi_{1}, \ldots, \xi_{k}, 0^{N-k}\right)\right] .
\end{aligned}
$$

A glimpse into proofs

An obstacle. The measure $\mathfrak{m}\left(\mathrm{d} x_{i}\right)$ is non-smooth.

1. For $\Delta>1, \mathfrak{m}$ is supported on negative even integers:

$$
\mathfrak{m}=\sum_{x \in 2 \mathbb{Z}_{<0}} 2 \sinh (-\gamma x) \delta_{x}
$$

2. For $-1<\Delta<1, \mathfrak{m}$ has density:

$$
\mathfrak{m}=\frac{\sinh \left(\frac{x(\pi-2 \gamma)}{2}\right)}{\sinh (\pi x / 2)} \mathrm{d} x
$$

3. For $\Delta<-1, \mathfrak{m}$ is supported on even integers:

$$
\mathfrak{m}=\sum_{x \in 2 \mathbb{Z}} 2 e^{-\gamma|x|} \delta_{x}
$$

4. For $-\Delta=-1, \mathfrak{m}$ has density:

$$
\mathfrak{m}=e^{-|x|} \mathrm{d} x
$$

A glimpse into proofs

An obstacle. The measure $\mathfrak{m}\left(\mathrm{d} x_{i}\right)$ is non-smooth.

1. For $\Delta>1, \mathfrak{m}$ is supported on negative even integers:

$$
\mathfrak{m}=\sum_{x \in 2 \mathbb{Z}_{<0}} 2 \sinh (-\gamma x) \delta_{x}
$$

2. For $-1<\Delta<1, \mathfrak{m}$ has density:

$$
\mathfrak{m}=\frac{\sinh \left(\frac{x(\pi-2 \gamma)}{2}\right)}{\sinh (\pi x / 2)} \mathrm{d} x
$$

3. For $\Delta<-1, \mathfrak{m}$ is supported on even integers:

$$
\mathfrak{m}=\sum_{x \in 2 \mathbb{Z}} 2 e^{-\gamma|x|} \delta_{x}
$$

4. For $-\Delta=-1, \mathfrak{m}$ has density:

$$
\mathfrak{m}=e^{-|x|} \mathrm{d} x
$$

Our approach: through Riemann-Hilbert based analysis for the associated orthogonal polynomials.

Summary

Boundary limits for the 6 v -model in $N \times N$ square with DWBC:

- GUE asymptotics after \sqrt{N}-rescaling for $\Delta<1$.
- Stationary stochastic six-vertex model for $\Delta>1$.
- Rich, but only partially understood limits for $\Delta \approx 1$.

- Asymptotic analysis based on the Izergin-Korepin determinant.

i/2m
 institute for pure \& applied mathematics

Geometry, Statistical Mechanics, and Integrability

March 11 - June 14, 2024

Long Program Schedule

- Opening Day: March 11, 2024
- Geometry, Statistical Mechanics, and Integrability Tutorials: March 12-15, 2024
- Workshop I: Statistical Mechanics and Discrete Geometry: March 25-29, 2024
- Workshop II: Integrability and Algebraic Combinatorics: April 15-19, 2024
- Workshop III: Statistical Mechanics Beyond 2D: May 6-10, 2024
- Workshop IV: Vertex Models: Algebraic and Probabilistic Aspects of Universality: May 20-24, 2024
- Culminating Workshop at Lake Arrowhead: June 9-14, 2024

Organizers

Dmitry Chelkak (Uni of Michigan) Jan de Gier (Univ. Melbourne) Vadim Gorin (UC Berkeley) Richard Kenyon (Yale) Greta Panova (USC)
Sanjay Ramassamy (CNRS)
Marianna Russkikh (Caltech)

Apply before October 11, 2023 at www.ipam.ucla.edu/gsidi2024

