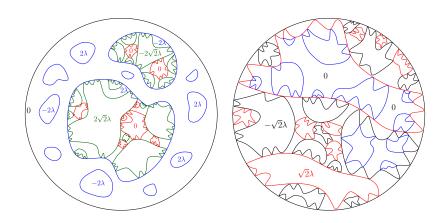
The Ashkin–Teller model and the GFF

Marcin Lis joint work with Hugo Duminil-Copin and Wei Qian

Dimers Paris, July 13th, 2023

Outline



Outline

- 1) The *double random current* model and main results
 - definition as an (enhanced) percolation model
 - the associated height function nesting field
 - two-valued sets of the Gaussian free field (GFF)
 - Main theorem: joint convergence of the nesting field together with the contours of the critical DRC (both outer and inner boundaries) to a continuum GFF together with its certain two-valued sets
- 2) About the proof:
 - a discussion in the discrete and convergence of the nesting field to the GFF
 - tightness of interfaces, and some properties of subsequential limits
 - identification of the limit through properties of two-valued sets
- 3) A conjecture about the Ashkin–Teller model (6V model).

1) The double random current model and main results

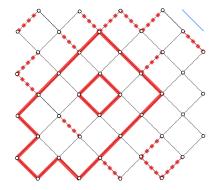
Currents

A *current* on a graph G = (V, E) is a pair $\mathbf{n} = (\mathbf{n}_{\text{odd}}, \mathbf{n}_{\text{even}})$ satisfying

- ▶ $\mathbf{n}_{\text{odd}} \subseteq E$ is an *even subgraph* of G,
- ▶ $\mathbf{n}_{\text{even}} \subseteq E \setminus \mathbf{n}_{\text{odd}}$.

A connected component of

- ▶ $\mathbf{n}_{\text{odd}} \cup \mathbf{n}_{\text{even}}$ is called a *cluster*,
- ightharpoonup \mathbf{n}_{odd} is called an *interface*.



Double random currents

Let Ω be the set of currents.

For $\beta > 0$, define the *double random current* probability measure on Ω by

$$\mathbf{P}_{G,\beta}(\mathbf{n}) \propto 2^{k(\mathbf{n})} \sinh(2\beta)^{|\mathbf{n}_{\text{odd}}|} \left(\cosh(2\beta) - 1\right)^{|\mathbf{n}_{\text{even}}|},$$

where $k(\mathbf{n})$ is the *number of clusters* of \mathbf{n} .

We mostly focus on the *critical model* on the square lattice

$$\beta = \beta_c = \frac{1}{2} \ln(\sqrt{2} + 1),$$

and usually drop β them from the notation.

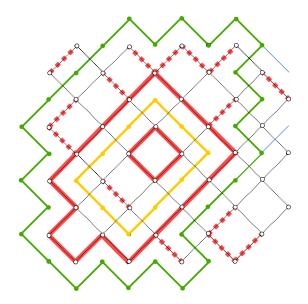
Double random currents

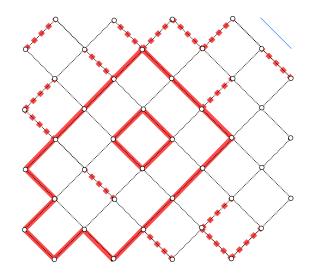
Double random currents are derived from the *Ising model* and posses a special combinatorial structure which is expressed in the celebrated *switching lemma* of Griffiths, Hurst and Sherman '70.

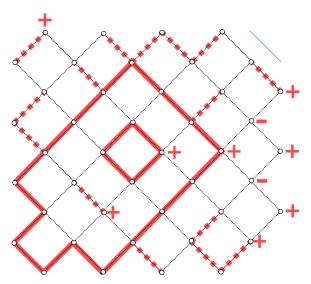
They were used by

- Aizenman '82 to prove triviality of the Ising field in dimension d > 4,
- Aizenman, Barsky and Fernandez '87 to obtain sharpness of phase transition for a general family of translation invariant spins systems,
- Aizenman, Duminil-Copin and Sidoravicius '14 to prove continuity of phase transition for Ising models on a large family of lattices including Z³,
- ► Aizenman and Duminil-Copin '20 to prove triviality in dimension *d* = 4

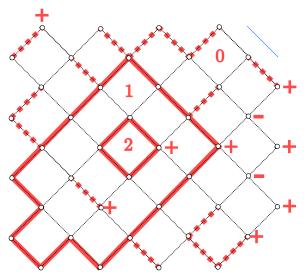
Inner and outer boundaries



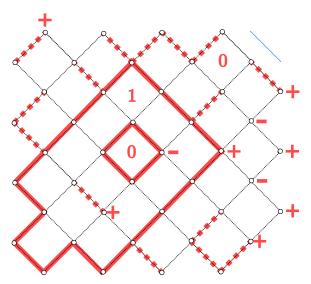




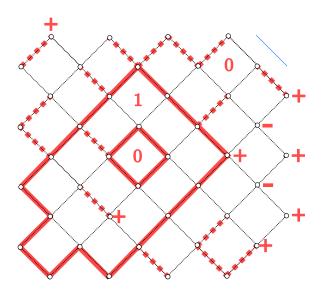
Independent spins for each cluster.



Heights change only across *contours*. Sign of increment given by spin when crossing from outside to inside.



Heights change only across *contours*. Sign of increment given by spin.



For nested contours in the same cluster, increments *alternate* with each layer.

The Dirichlet Gaussian free field (GFF)

Let $D \subset \mathbb{C}$ be a domain with boundary and let

$$G_D(x,y) = \int_0^\infty p_t^D(x,y)dt$$

be the *Green's function* of Brownian motion killed upon hitting ∂D .

The Gaussian free field with Dirichlet b.c. h is a random distribution satisfying

 \blacktriangleright h(f) is a mean-zero Gaussian for all test functions f,

$$\mathbf{E}[h(f)h(g)] = \int_{\mathcal{D}} \int_{\mathcal{D}} f(x)g(y)G_D(x,y)dxdy$$

for all f, g.

The Dirichlet Gaussian free field (GFF)

Let $D \subset \mathbb{C}$ be a domain with boundary and let

$$G_D(x,y) = \int_0^\infty p_t^D(x,y)dt$$

be the *Green's function* of Brownian motion killed upon hitting ∂D .

The Gaussian free field with Dirichlet b.c. h is a random distribution satisfying

 \blacktriangleright h(f) is a mean-zero Gaussian for all test functions f,

$$\mathbf{E}[h(f)h(g)] = \int_{\mathcal{D}} \int_{\mathcal{D}} f(x)g(y)G_D(x,y)dxdy$$

for all f, g.

The value at a point does not make sense!

Two-valued sets of the GFF

Introduced by Aru, Sepúlveda and Werner '17 and studied by Aru, Sepúlveda '18.

Heuristics

Let a, b > 0. Heuristically, the *two-valued level set* $\mathbb{A}_{-a,b}$ of the GFF h, is the set of points in D that are connected to the boundary ∂D by a path of points where h takes values in [-a, b].

 $\mathbb{A}_{-a,b}$ exists iff $a+b \geq 2\lambda$, where $\lambda = \sqrt{\pi/8}$.

 $\mathbb{A}_{-a,b}$ is measurable wrt to h.

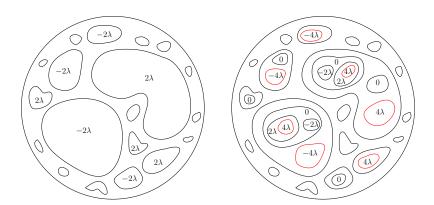
Let $\mathcal{L}_{-a,b}$ be the set of boundaries of the conn. components of $D \setminus \mathbb{A}_{-a,b}$.

A loop $\ell \in \mathcal{L}_{-a,b}$ with *label* -a touches ∂D , iff $a < 2\lambda$ and $\ell \in \mathcal{L}_{-a,2\lambda-a}$.

Coupling of CLE₄ and GFF

Theorem (Miller & Sheffield '11)

CLE₄ has the same distribution as $\mathcal{L}_{-2\lambda,2\lambda}$. Moreover, the *nesting field* of the CLE₄ has the same distribution as the GFF.



Fix a simply connected bounded Jordan domain $D \subset \mathbb{C}$, and let $D^{\delta} = D \cap \delta \mathbb{Z}^2$ be its approximation.

Let \mathbf{n}^δ and h^δ be the associated critical double random current and its nesting field.

Let B^{δ} be the collection of outer boundaries of \mathbf{n}^{δ} .

For each loop $\ell^{\delta} \in B^{\delta}$, let $A^{\delta}(\ell^{\delta})$ be the collection of loops corresponding to the inner boundary of the cluster whose outer boundary is ℓ^{δ} .

Let
$$A^{\delta} := \cup_{\ell^{\delta} \in B^{\delta}} A^{\delta}(\ell^{\delta}).$$

For a loop ℓ , let $O(\ell)$ be the domain encircled by ℓ .

Theorem (Duminil-Copin & L. & Qian '21)

As $\delta \to 0$, the law of $(h^{\delta}, B^{\delta}, A^{\delta})$ under $\mathbf{P}_{D^{\delta}}$ converges to $(\frac{1}{2\sqrt{2}\lambda}h, B, A)$, where

- \triangleright h is a GFF in D.
- $B = \mathrm{CLE}_4(h) = \mathcal{L}_{-2\lambda,2\lambda}(h).$
- If the outer boundary ℓ^{δ} of a cluster converges to a loop $\ell \in B$ with boundary value 2λ (resp. -2λ), then $A^{\delta}(\ell^{\delta})$ converges to $\mathcal{L}_{-2\lambda,(2\sqrt{2}-2)\lambda}(h|_{O(\ell)})$ (resp. $\mathcal{L}_{(2-2\sqrt{2})\lambda,2\lambda}(h|_{O(\ell)})$).

Moreover

If a loop ℓ^{δ} in A^{δ} converges to ℓ , then the outer boundaries of the outermost clusters enclosed by ℓ^{δ} converge to a $\text{CLE}_4(h|_{O(\ell)})$.

Theorem (Duminil-Copin & L. & Qian '21)

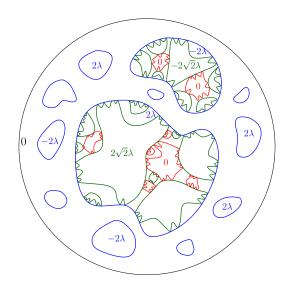
As $\delta \to 0$, the law of $(h^{\delta}, B^{\delta}, A^{\delta})$ under $\mathbf{P}_{D^{\delta}}$ converges to $(\frac{1}{2\sqrt{2}\lambda}h, B, A)$, where

- \triangleright h is a GFF in D.
- $B = \mathrm{CLE}_4(h) = \mathcal{L}_{-2\lambda,2\lambda}(h).$
- If the outer boundary ℓ^{δ} of a cluster converges to a loop $\ell \in B$ with boundary value 2λ (resp. -2λ), then $A^{\delta}(\ell^{\delta})$ converges to $\mathcal{L}_{-2\lambda,(2\sqrt{2}-2)\lambda}(h|_{O(\ell)})$ (resp. $\mathcal{L}_{(2-2\sqrt{2})\lambda,2\lambda}(h|_{O(\ell)})$).

Moreover

If a loop ℓ^{δ} in A^{δ} converges to ℓ , then the outer boundaries of the outermost clusters enclosed by ℓ^{δ} converge to a $\mathrm{CLE}_4(h|_{O(\ell)})$.

The gap 2λ does not exist on the discrete level!



Duality

Let G^{\dagger} to be the dual graph and dual (including the vertex corresponding to the unbounded face of G).

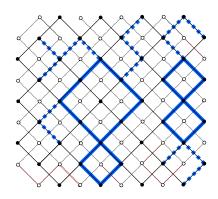
The *dual* double random current model is the probability measure $\mathbf{P}_{G^{\dagger},\beta^{\dagger}}$, with

$$\exp(-2\beta^{\dagger}) = \tanh(\beta).$$

The critical temperature is *self-dual*:

$$\beta_c^{\dagger} = \beta_c$$
.

The nesting field is analogous but takes values in $\mathbb{Z} + \frac{1}{2}$.



Let D and D^{δ} be as before.

Let $(D^{\delta})^{\dagger}$ be the dual graph (the outer *ghost* vertex has large degree).

Let \mathbf{n}^{δ} and h^{δ} be the critical double random current and its nesting field on $(D^{\delta})^{\dagger}$.

Let \widehat{A}^{δ} be the collection of loops in the inner boundary of the cluster of the ghost vertex.

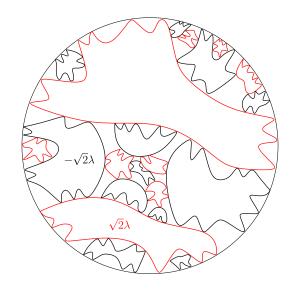
Theorem (Duminil-Copin & L. & Qian '21)

As $\delta \to 0$, the law of $(h^{\delta}, \widehat{A}^{\delta})$ under $\mathbf{P}_{(D^{\delta})^{\dagger}}$ converges to $(\frac{1}{2\sqrt{2}\lambda}h, \widehat{A})$, where

- \blacktriangleright h is a GFF in D.
- $\blacktriangleright \ \widehat{A} = \mathcal{L}_{-\sqrt{2}\lambda,\sqrt{2}\lambda}(h).$

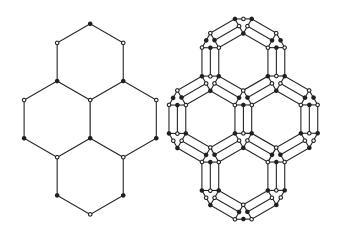
Moreover,

In each inner boundary loop $\ell^{\delta} \in \widehat{A}^{\delta}$, the \mathbf{n}^{δ} has free boundary conditions, and the previous theorem applies.



2) About the proof

Connection to dimers



G G

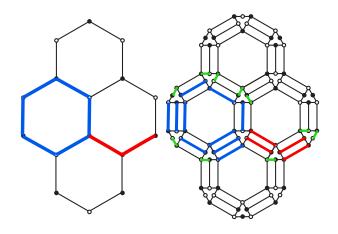
Connection to dimers

Note that the set of faces of G embeds naturally in the set of faces of G^d .

Theorem (Duminil-Copin & L., 2016)

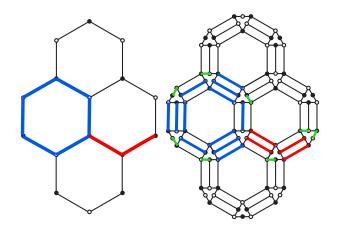
Under this mapping, the height function on G^d restricted to the faces of G becomes the double random current nesting field.

A measure preserving mapping - edge factors



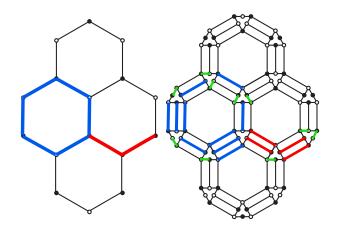
$$\mathbf{P}_{G,\beta}(\mathbf{n}) \propto 2^{k(\mathbf{n})} \sinh(2\beta)^{|\mathbf{n}_{\mathrm{odd}}|} \left(\cosh(2\beta) - 1\right)^{|\mathbf{n}_{\mathrm{even}}|}$$

A measure preserving mapping - edge factors



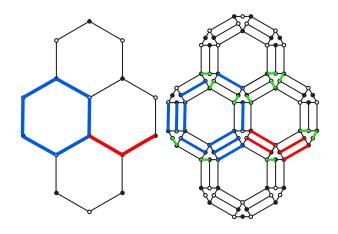
$$\mathbf{P}_{G,\beta}(\mathbf{n}) \propto 2^{k(\mathbf{n})} \sinh(2\beta)^{|\mathbf{n}_{\mathrm{odd}}|} \left(\cosh(2\beta) - 1\right)^{|\mathbf{n}_{\mathrm{even}}|}$$

A measure preserving mapping - edge factors



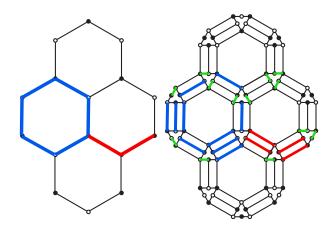
$$\mathbf{P}_{G,\beta}(\mathbf{n}) \propto 2^{k(\mathbf{n})} \sinh(2\beta)^{|\mathbf{n}_{\mathrm{odd}}|} \left(\cosh(2\beta) - 1\right)^{|\mathbf{n}_{\mathrm{even}}|}$$

A measure preserving mapping - vertex factors



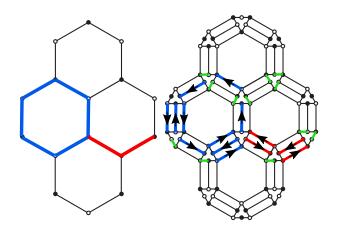
$$\mathbf{P}_{G,\beta}(\mathbf{n}) \propto 2^{k(\mathbf{n})} \sinh(2\beta)^{|\mathbf{n}_{\mathrm{odd}}|} \big(\cosh(2\beta) - 1\big)^{|\mathbf{n}_{\mathrm{even}}|}$$

A measure preserving mapping - vertex factors



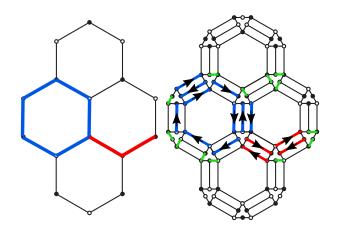
$$\mathbf{P}_{G,\beta}(\mathbf{n}) \propto 2^{k(\mathbf{n})} \sinh(2\beta)^{|\mathbf{n}_{\mathrm{odd}}|} \big(\cosh(2\beta) - 1\big)^{|\mathbf{n}_{\mathrm{even}}|}$$

A measure preserving mapping - cluster factors



$$\mathbf{P}_{G,\beta}(\mathbf{n}) \propto 2^{k(\mathbf{n})} \sinh(2\beta)^{|\mathbf{n}_{\mathrm{odd}}|} \big(\cosh(2\beta) - 1\big)^{|\mathbf{n}_{\mathrm{even}}|}$$

A measure preserving mapping - cluster factors

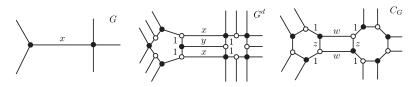


$$\mathbf{P}_{G,\beta}(\mathbf{n}) \propto 2^{k(\mathbf{n})} \sinh(2\beta)^{|\mathbf{n}_{\mathrm{odd}}|} \big(\cosh(2\beta) - 1\big)^{|\mathbf{n}_{\mathrm{even}}|}$$

Connection to dimers

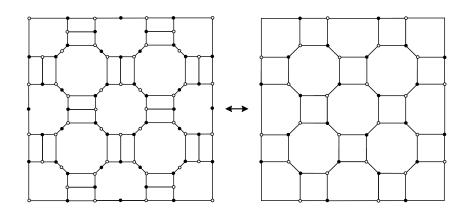
Dubédat (2011) (based on Fan and Wu (1970)) provided a mapping between the double Ising model on a graph G and dimers on a related graph C_G .

Boutillier and de Tilière (2012) provided a different proof of the same mapping and showed convergence to full plane GFF.

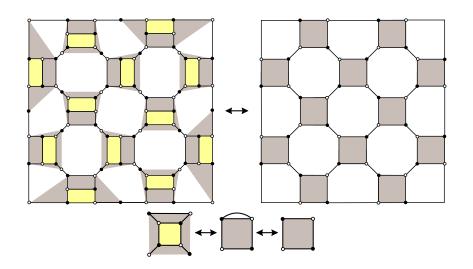


The weights satisfy $y = \frac{2x}{1-x^2}$, $w = \frac{2x}{1+x^2}$, $z = \frac{1-x^2}{1+x^2}$, where $x = \tanh \beta$.

Connection to dimers



Connection to dimers



Scaling limit of the height function

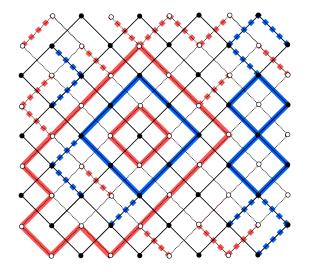
Theorem (Duminil-Copin & L. & Qian, '21)

As $\delta \to 0$, the critical double random current nesting field drawn according to \mathbf{P}_{D^δ} or $\mathbf{P}_{(D^\delta)^+}$ converges to $\frac{1}{2\sqrt{2}\lambda}h$ where h is a GFF in D.

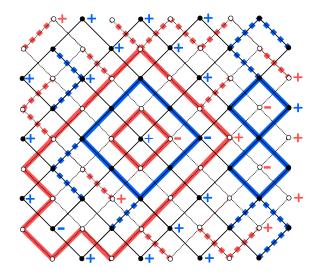
Proof

- Express the inverse Kasteleyn matrix K^{-1} on C_G in terms of the spin fermionic observable of Chelkak and Smirnov '09, and Hongler and Smirnov '10.
- Use the scaling limit of fermionic observables to identify the moments of the height function at macroscopic distances (like in Kenyon '99).
- ▶ Use crossing estimates to control the moments at short distances.

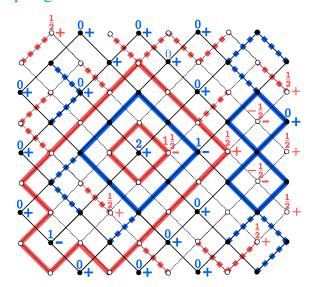
Master coupling



Master coupling



Master coupling

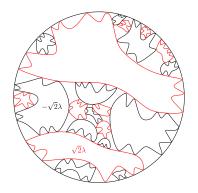


Identification of the limit – wired boundary conditions

Theorem (Duminil-Copin & L. & Qian, '21)

As $\delta \to 0$, the law of $(h^\delta, \widehat{A}^\delta)$ under $\mathbf{P}_{(D^\delta)^\dagger}$ converges to

$$\big(\tfrac{1}{2\sqrt{2}\lambda}h,\mathcal{L}_{-\sqrt{2}\lambda,\sqrt{2}\lambda}(h)\big).$$



Identification of the limit – free boundary conditions

Proposition (Duminil-Copin & L. & Qian '21)

The family $(h^{\delta}, B^{\delta}, A^{\delta})_{\delta>0}$ is tight and for every subsequential limit (h, B, A), a.s.

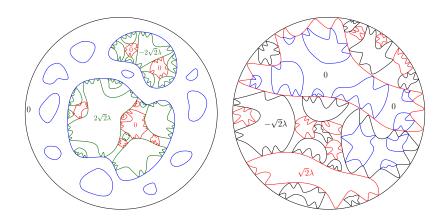
- 1. *h* is a GFF in *D*.
- 2. The sets *A* and *B* consist of simple loops which do not cross each other. Every loop in *A* is encircled by some loop in *B*.
- 3. Almost surely, any two loops in *B* do not intersect each other.
- 4. (*Local set*) The gasket of *A* is a *thin local set* of *h* with boundary values belonging to

$$\{-2\sqrt{2}\lambda,0,2\sqrt{2}\lambda\}.$$

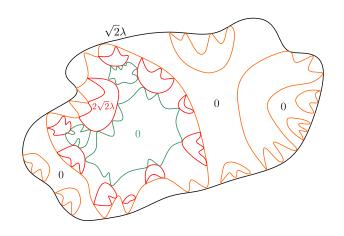
More precisely, for each loop $\ell \in B$, for all $\gamma \in A(\ell)$, h restricted to $O(\gamma)$ is equal to an independent GFF with boundary condition 0 or $\pm 2\sqrt{2}\lambda$.

5. The loops in A that have boundary value 0 do not touch the loops in B.

Identification of the limit – free boundary conditions



Identification of the limit – free boundary conditions



3) A conjecture on the Ashkin–Teller model

A conjecture on the Ashkin-Teller model

For $\beta > 0$ and $U \in \mathbb{R}$, Ahskin–Teller currents are given by

$$\mathbf{P}_{G,\beta}(\mathbf{n}) \propto 2^{k(\mathbf{n})} \left(e^{2U}\sinh(2\beta)\right)^{|\mathbf{n}_{\mathrm{odd}}|} \left(e^{2U}\cosh(2\beta)-1\right)^{|\mathbf{n}_{\mathrm{even}}|},$$

Conjecture (L. '21)

Consider the *critical Ashkin–Teller model* of the square lattice model given by

$$\sinh(2\beta) = e^{-2U}, \qquad \beta \ge U.$$

Then, analogous theorems as for U=0, hold but with $\sqrt{2}$ replaced by \sqrt{g} in all the statements, where g satisfies

$$\sin\left(\frac{\pi}{8}g\right) = \coth(2\beta)/2.$$

Thank you for your attention!