Tilings with multivariate weights 0000

Skew SYTs 0000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

NILP & NHLF 000000000

1

Asymptotic Algebraic Combinatorics I: lozenge tilings

Greta Panova

University of Southern California

DIMERS ANR final conference, Paris, 2023

Greta Panova

Partitions Symmetric function

Lozenge Tilings via Schur functions

Tilings with multivariate weights 0000 Skew SYTs 0000

NILP & NHLF 00000000

Dimers, Asymptotics and Algebraic combinatorics

Part 1. From plane partitions and symmetric functions to limit behavior of lozenge tilings... and back.

Part 2. Asymptotic Algebraic Combinatorics and Representation Theory: the quest for understanding structure constants (dimensions, Kostka, Littlewood-Richardson, Kronecker coefficients)

Partitions Symmetric function

Lozenge Tilings via Schur function 00000000 Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF

Integer and plane partitions

Integer partitions $\lambda \vdash n : \lambda = (\lambda_1, \dots, \lambda_\ell)$, s.t $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_\ell > 0$, $|\lambda| := \lambda_1 + \lambda_2 + \dots = n$

Partitions Symmetric functions 000000

Lozenge Tilings via Schur functions

Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF 00000000

Integer and plane partitions

Integer partitions
$$\lambda \vdash n : \lambda = (\lambda_1, \dots, \lambda_\ell)$$
, s.t
 $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_\ell > 0$, $|\lambda| := \lambda_1 + \lambda_2 + \dots = n$
Young diagram of $\lambda = (5, 3, 2)$:

Greta Panova

 Partitions Symmetric functions 000000

Lozenge Tilings via Schur functions

Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF 000000000

Integer and plane partitions

Integer partitions
$$\lambda \vdash n : \lambda = (\lambda_1, \dots, \lambda_\ell)$$
, s.t
 $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_\ell > 0$, $|\lambda| := \lambda_1 + \lambda_2 + \dots = n$
Young diagram of $\lambda = (5, 3, 2)$:
 $\sum_{\lambda} q^{|\lambda|} = \prod_{i=1}^{\infty} \frac{1}{1 - q^i}$

Partitions Symmetric function

Lozenge Tilings via Schur function: 00000000 Tilings with multivariate weights 0000 Skew SYTs 0000 NILP & NHLF 000000000

Integer and plane partitions

Integer partitions $\lambda \vdash n : \lambda = (\lambda_1, \dots, \lambda_\ell)$, s.t $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_\ell > 0$, $|\lambda| := \lambda_1 + \lambda_2 + \dots = n$ Young diagram of $\lambda = (5, 3, 2)$: $\sum_{\lambda} q^{|\lambda|} = \prod_{i=1}^{\infty} \frac{1}{1 - q^i}$

Plane partitions

 $\pi: \mathbb{N}^2 \to \mathbb{Z}_{\geq 0}$, s.t.

$$\pi(i,j) \ge \pi(i+1,j), \pi(i,j+1) \qquad |\pi| := \sum_{i,j} \pi(i,j)$$

4	4	3	1	1	0	
4	3	2	1	0		
2	2	1	0			
1	1	0				

Partitions Symmetric function

Lozenge Tilings via Schur function 00000000 Tilings with multivariate weights 0000 Skew SYTs 0000 NILP & NHLF 000000000

Integer and plane partitions

Integer partitions
$$\lambda \vdash n : \lambda = (\lambda_1, \dots, \lambda_\ell)$$
, s.t
 $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_\ell > 0$, $|\lambda| := \lambda_1 + \lambda_2 + \dots = n$
Young diagram of $\lambda = (5, 3, 2)$:
 $\sum_{\lambda} q^{|\lambda|} = \prod_{i=1}^{\infty} \frac{1}{1 - q^i}$

Plane partitions

 $\pi:\mathbb{N}^2\to\mathbb{Z}_{\geq 0}\text{, s.t.}$

$$\pi(i,j) \ge \pi(i+1,j), \pi(i,j+1) \qquad |\pi| := \sum_{i,j} \pi(i,j)$$

MacMahon:

$$\sum_{\pi} q^{|\pi|} = \prod_{i=1}^{\infty} \frac{1}{(1-q^i)^i}$$

Lozenge Tilings via Schur functio

Tilings with multivariate weights 0000 Skew SYTs 0000 NILP & NHLF 000000000

Plane partitions and dimers

5	4	4	4	3	2
5	3	3	2	2	1
4	3	2	2	1	
3	2	2	1		
2	1	1	1		
1	1				

tions Lozenge Tilings via 00000000 Tilings with multivariate weights 0000

Skew SYIs 0000 NILP & NHLF

Plane partitions and dimers

			_	-	
5	4	4	4	3	2
5	3	3	2	2	1
4	3	2	2	1	
3	2	2	1		
2	1	1	1		
1	1				

4

Lozenge Tilings via Schur functions

Tilings with multivariate weights 0000

Skew SYTs 0000

Plane partitions and dimers

5	4	4	4	3	2
5	3	3	2	2	1
4	3	2	2	1	
3	2	2	1		
2	1	1	1		
1	1				

Lozenge Tilings via Schur fund 00000000 Tilings with multivariate weights 0000

Skew SYTs 0000 VILP & NHLF

Plane partitions and dimers

5	4	4	4	3	2
5	3	3	2	2	1
4	3	2	2	1	
3	2	2	1		
2	1	1	1		
1	1				

4

Lozenge Tilings via Schur function

Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF

Plane partitions and dimers

5	4	4	4	3	2
5	3	3	2	2	1
4	3	2	2	1	
3	2	2	1		
2	1	1	1		
1	1				

4

Hillman-Grassi map Φ : Reverse Plane Partitions of shape λ to Arrays of shape λ :

$$\begin{array}{rcl} RRP & \pi = & \overbrace{\begin{array}{c} 0 & 1 & 2 \\ 1 & 1 & 3 \end{array}} \rightarrow \overbrace{\begin{array}{c} 0 & 0 & 1 \\ 1 & 1 & 3 \end{array}} \rightarrow \overbrace{\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 3 \end{array}} \rightarrow \overbrace{\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 2 \end{array}} \rightarrow \overbrace{\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 1 \end{array}} \rightarrow \overbrace{\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 1 \end{array}} \rightarrow \overbrace{\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 2 \end{array}} \rightarrow \overbrace{\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}} \rightarrow \overbrace{\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 2 \end{array}} \rightarrow \overbrace{\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 2 \end{array}} \rightarrow \overbrace{\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 2 \end{array}} \rightarrow \overbrace{\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 2 \end{array}} \rightarrow \overbrace{\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 2 \end{array}} \rightarrow \overbrace{\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 2 \end{array} \rightarrow \overbrace{\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 2 \end{array}} =: Array \ A = \Phi(P) \end{array}$$

イロト イヨト イヨト イヨト 二日

5

Partitions 00000

Hillman-Grassl map Φ : Reverse Plane Partitions of shape λ to Arrays of shape λ :

$$RRP \ \pi = \begin{array}{c} 0 & 1 & 2 \\ 1 & 1 & 3 \\ \hline 1 & 1 & 3 \\ \hline 2 & 1 \\ \hline 1 & 1 & 3 \\ \hline 1 & 1 & 3 \\ \hline 0 & 0 & 3 \\ \hline 0 & 0 & 0 \\ \hline 1 & 0 \\ \hline 1 & 0 & 0 \\ \hline 1 & 0 & 0$$

Partitions 00000

イロト イヨト イヨト イヨト 二日

Hillman-Grassl map Φ : Reverse Plane Partitions of shape λ to Arrays of shape λ :

$$\begin{array}{rcl} {\it RRP} & \pi = & \begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & 3 \\ \hline 1 & 1 & 3 \\ \hline 2 & 1 & 1 & 3 \\ \hline 1 & 1 & 3 \\ \hline 0 & 0 & 3 \\ \hline 0 & 0 & 0 \\ \hline 0$$

Partitions 00000

5

イロト イヨト イヨト イヨト 二日

Hillman-Grassl map Φ : Reverse Plane Partitions of shape λ to Arrays of shape λ :

$$\begin{array}{rcl} RRP & \pi = & \boxed{012} \\ 113 \\ 113 \\ 113 \\ \hline \end{array} \xrightarrow{001} \\ 000 \\ 000 \\ \hline \end{array} \xrightarrow{000} \\ 000 \\ \hline \end{array} \xrightarrow{000} \\ 113 \\ \hline \end{array} \xrightarrow{000} \\ 100 \\ \hline \end{array} \xrightarrow{100} \\ \hline \end{array} \xrightarrow{000} \\ \hline \end{array} \xrightarrow{100} \\ \hline \end{array} \xrightarrow{100} \\ \hline \end{array} \xrightarrow{000} \\ \hline \end{array} \xrightarrow{100} \\ \hline \end{array} \xrightarrow{000} \\ \hline \end{array} \xrightarrow{100} \\ \hline \end{array} \xrightarrow{000} \\ \hline \end{array} \xrightarrow{100} \\ \hline \end{array} \xrightarrow{100} \\ \hline \end{array} \xrightarrow{000} \\ \hline \end{array} \xrightarrow{100} \\ \hline \end{array} \xrightarrow{100} \\ \hline \end{array} \xrightarrow{100} \\ \hline \end{array} \xrightarrow{100} \\ \hline$$

$$\begin{array}{r} RRP & \pi = \\ \hline \end{array} \xrightarrow{000} \\ \hline \end{array} \xrightarrow{000} \\ \hline \end{array} \xrightarrow{100} \\ \hline$$

$$\begin{array}{r} reg \\ reg \\$$

 $\sum_{\pi \in \mathcal{RPP}(a^b)} q^{|\pi|} = \prod_{i=1}^a \prod_{j=1}^b rac{1}{1-q^{i+j-1}}$

Partitions 00000

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 めんぐ

Partitions Symmetric function

Lozenge Tilings via Schur functions

Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF 000000000

Skew (reverse) plane partitions

Partitions Symmetric funct

Lozenge Tilings via Schur functions 00000000 Tilings with multivariate weights 0000

Skew SYTs 0000

イロト イロト イヨト イヨト

NILP & NHLF 00000000

Skew (reverse) plane partitions

$\mathcal{E}(\lambda/\mu) = \{ D \subset \lambda : \text{ obtained from } \mu \text{ via} \bigoplus \longrightarrow \bigoplus \}$

Greta Panova

6

э

Partitions Symmetric funct

Lozenge Tilings via Schur functions 00000000 Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF 000000000

Skew (reverse) plane partitions

Partitions Symmetric fr 00000 0000000

Lozenge Tilings via Schur function

Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF

Skew (reverse) plane partitions

Skew RPPs \Leftrightarrow arrays with support *"pleasant diagrams"*:

 $PD(\lambda/\mu) := \{ S \subset [\lambda] : S \subset [\lambda] \setminus D, \text{ for some } D \in \mathcal{E}(\lambda/\mu) \}$

Partitions Symmetric f

Lozenge Tilings via Schur functions 00000000 Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF 00000000

Skew (reverse) plane partitions

Skew RPPs \Leftrightarrow arrays with support *"pleasant diagrams"*:

$$PD(\lambda/\mu) := \{ S \subset [\lambda] : S \subset [\lambda] \setminus D, \text{ for some } D \in \mathcal{E}(\lambda/\mu) \}$$

Theorem (Morales-Pak-P)

The Hillman-GrassI map is a bijection between skew RPPs of shape λ/μ and arrays with support in the pleasant diagrams:

Partitions Symmetric 1 00000 0000000 Lozenge Tilings via Schur function

Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF

Skew (reverse) plane partitions

Skew RPPs \Leftrightarrow arrays with support *"pleasant diagrams"*:

$$PD(\lambda/\mu) := \{ S \subset [\lambda] : S \subset [\lambda] \setminus D, \text{ for some } D \in \mathcal{E}(\lambda/\mu) \}$$

Theorem (Morales-Pak-P)

The Hillman-GrassI map is a bijection between skew RPPs of shape λ/μ and arrays with support in the pleasant diagrams:

$$\sum_{\pi \in {\it RPP}(\lambda/\mu)} q^{|\pi|} = \sum_{S \in {\it PD}(\lambda/\mu)} \prod_{u \in S} \left[rac{q^{h(u)}}{1-q^{h(u)}}
ight]$$

NEXT: add more variables

6

artitions Symmetric functions

Lozenge Tilings via Schur functio

Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF

The ring of symmetric functions Λ

 Λ_n = Formal power series in x_1, x_2, \ldots of degree n, s.t. $f(x_1, x_2, \ldots) = f(x_{\sigma_1}, x_{\sigma_2}, \ldots)$ for all permutations σ .

 $\dim \Lambda_n = \#\{\lambda \vdash n\}$

artitions Symmetric functions

Lozenge Tilings via Schur function 00000000 Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF

The ring of symmetric functions Λ

$$\begin{split} &\Lambda_n = \text{Formal power series in } x_1, x_2, \dots \text{ of degree } n, \text{ s.t. } \\ &f(x_1, x_2, \dots) = f(x_{\sigma_1}, x_{\sigma_2}, \dots) \text{ for all permutations } \sigma. \end{split}$$

$$\dim \Lambda_n = \#\{\lambda \vdash n\}$$

Bases of Λ : Monomial:

$$m_{\lambda}(x_1, x_2, \ldots) = \sum_{\sigma = perm(\lambda_1, \lambda_2, \ldots)} x_1^{\sigma_1} x_2^{\sigma_2} \cdots$$

E.g. $m_{(1,1)}(x_1, x_2, x_3) = x_1 x_2 + x_2 x_3 + x_1 x_3, \ m_{(2)}(x_1, x_2, \ldots) = x_1^2 + x_2^2 + \cdots$

Lozenge Tilings via Schur functions

Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF

The ring of symmetric functions Λ

 Λ_n = Formal power series in x_1, x_2, \ldots of degree n, s.t. $f(x_1, x_2, \ldots) = f(x_{\sigma_1}, x_{\sigma_2}, \ldots)$ for all permutations σ .

dim
$$\Lambda_n = \#\{\lambda \vdash n\}$$

Bases of Λ : Monomial:

$$m_{\lambda}(x_1, x_2, \ldots) = \sum_{\sigma = perm(\lambda_1, \lambda_2, \ldots)} x_1^{\sigma_1} x_2^{\sigma_2} \cdots$$

E.g. $m_{(1,1)}(x_1, x_2, x_3) = x_1 x_2 + x_2 x_3 + x_1 x_3, \ m_{(2)}(x_1, x_2, \ldots) = x_1^2 + x_2^2 + \cdots$
 $m_{(2,1,1)}(x_1, x_2, x_3, x_4, x_5) = x_1^2 x_2 x_3 + x_2^2 x_1 x_3 + \cdots + x_5^2 x_3 x_4$

 $= m_{(2,1,1)}(x_1,\ldots,x_4) + x_5 m_{(2,1)}(x_1\ldots,x_4) + x_5^2 m_{(1,1)}(x_1,\ldots,x_4)$

・ロト・西ト・ヨト・ヨー うへの

Lozenge Tilings via Schur functions 00000000 Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF

The ring of symmetric functions Λ

$$\begin{split} &\Lambda_n = \text{Formal power series in } x_1, x_2, \dots \text{ of degree } n, \text{ s.t. } \\ &f(x_1, x_2, \dots) = f(x_{\sigma_1}, x_{\sigma_2}, \dots) \text{ for all permutations } \sigma. \end{split}$$

$$\dim \Lambda_n = \#\{\lambda \vdash n\}$$

Bases of Λ : Monomial:

$$m_{\lambda}(x_1, x_2, \ldots) = \sum_{\substack{\sigma = perm(\lambda_1, \lambda_2, \ldots)}} x_1^{\sigma_1} x_2^{\sigma_2} \cdots$$

E.g. $m_{(1,1)}(x_1, x_2, x_3) = x_1 x_2 + x_2 x_3 + x_1 x_3, \ m_{(2)}(x_1, x_2, \ldots) = x_1^2 + x_2^2 + \cdots$
 $m_{(2,1,1)}(x_1, x_2, x_3, x_4, x_5) = x_1^2 x_2 x_3 + x_2^2 x_1 x_3 + \cdots + x_5^2 x_3 x_4$

$$= m_{(2,1,1)}(x_1,\ldots,x_4) + x_5 m_{(2,1)}(x_1\ldots,x_4) + x_5^2 m_{(1,1)}(x_1,\ldots,x_4)$$

Power sums:

$$p_n(x_1,\ldots):=x_1^n+x_2^n+\cdots$$
 $p_{\lambda}:=p_{\lambda_1}p_{\lambda_2}\cdots$

$$p_{2}(x_{1},...) = x_{1}^{2} + x_{2}^{2} + \cdots$$

$$p_{(2,1)}(x_{1},...) = (x_{1}^{2} + x_{2}^{2} + \cdots)(x_{1} + x_{2} + \cdots)$$

$$= m_{3}(x_{1},...) + m_{(2,1)}(x_{1},...) \quad \text{and} \quad$$

Greta Panova

Symmetric functions

Lozenge Tilings via Schur functions 00000000 Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF

The ring of symmetric functions Λ

Homogeneous:

$$h_n(x_1,\ldots,x_N):=\sum_{a_1+\cdots+a_N=n}x_1^{a_1}x_2^{a_2}\cdots x_N^{a_N}=\sum_{\lambda\vdash n}m_\lambda(x_1,\ldots,x_N)$$

 $h_{\lambda} := h_{\lambda_1} h_{\lambda_2} \cdots$

e.g. $h_n(\underbrace{1,\ldots,1}_N) = \binom{N+n-1}{n}$

artitions Symmetric functions

Lozenge Tilings via Schur functions 00000000 Tilings with multivariate weights 0000

Skew SYTs 0000

イロト イヨト イヨト イヨト 二日

NILP & NHLF 000000000

8

The ring of symmetric functions $\boldsymbol{\Lambda}$

Homogeneous:

$$h_n(x_1,\ldots,x_N):=\sum_{a_1+\cdots+a_N=n}x_1^{a_1}x_2^{a_2}\cdots x_N^{a_N}=\sum_{\lambda\vdash n}m_\lambda(x_1,\ldots,x_N)$$

$$h_{\lambda} := h_{\lambda_1} h_{\lambda_2} \cdots$$

e.g.
$$h_n(\underbrace{1,\ldots,1}_N) = \binom{N+n-1}{n}$$

Elementary:

$$e_n(x_1,\ldots,x_N) := \sum_{1 \le i_1 < i_2 < \cdots < i_n \le N} x_{i_1} \cdots x_{i_n}$$

$$e_{\lambda} := e_{\lambda_1} e_{\lambda_2} \cdots$$

e.g.
$$e_n(\underbrace{1,\ldots,1}_N) = \binom{N}{n}$$

Greta Panova

rtitions Symmetric functions

Lozenge Tilings via Schur function 00000000 Tilings with multivariate weights 0000 Skew SYIs

NILP & NHLF 000000000

The Schur functions

Irreducible (polynomial) representations of the General Linear group $GL_N(\mathbb{C}) \to GL(V)$:

Weyl modules V_{λ} (aka \mathcal{W}_{λ}), indexed by highest weights λ , $\ell(\lambda) \leq N$.

 Symmetric functions

 0000
 0000000

Lozenge Tilings via Schur functions 00000000 Tilings with multivariate weights 0000 Skew SYTs 0000 NILP & NHLF 00000000

The Schur functions

Irreducible (polynomial) representations of the General Linear group $GL_N(\mathbb{C}) \to GL(V)$:

Weyl modules V_{λ} (aka \mathcal{W}_{λ}), indexed by highest weights λ , $\ell(\lambda) \leq N$.

Characters or representations $\rho : G \to GL(V)$: $\chi_V(g) = \operatorname{Tr}(\rho(g))$ $\{\chi_V : V \in Irr(G)\}$ -orthonormal basis of central functions on G(const on conjugacy classes), $\chi_V \longleftrightarrow V$.

$$s_{\lambda}(x_1,\ldots,x_N) = \chi_{V_{\lambda}} \left(\begin{bmatrix} x_1 & 0 & \cdots \\ 0 & x_2 & \cdots \\ \vdots & \ddots & \cdots \end{bmatrix} \right)$$

Special cases:

$$s_{(n)} = h_n \qquad s_{(1^n)} = e_n$$

titions Symmetric functions

Lozenge Tilings via Schur functions 00000000 Tilings with multivariate weights

Skew SYTs 0000 NILP & NHLF 00000000

The Schur functions

Irreducible (polynomial) representations of the General Linear group $GL_N(\mathbb{C}) \to GL(V)$:

Weyl modules V_{λ} (aka \mathcal{W}_{λ}), indexed by highest weights λ , $\ell(\lambda) \leq N$.

Characters or representations $\rho : G \to GL(V)$: $\chi_V(g) = \operatorname{Tr}(\rho(g))$ $\{\chi_V : V \in Irr(G)\}$ -orthonormal basis of central functions on G(const on conjugacy classes), $\chi_V \longleftrightarrow V$.

$$s_{\lambda}(x_1,\ldots,x_N) = \chi_{V_{\lambda}} \left(\begin{bmatrix} x_1 & 0 & \cdots \\ 0 & x_2 & \cdots \\ \vdots & \ddots & \cdots \end{bmatrix} \right)$$

Special cases:

Weyl character formula:

$$egin{aligned} &s_{(1)}=h_n &s_{(1^n)}=e_n\ &s_\lambda(x_1,\ldots,x_N):=rac{\det\left[x_i^{\lambda_j+N-j}
ight]_{i,j=1}^N}{\prod_{i< j}(x_i-x_j)} \end{aligned}$$

q

 Symmetric functions

 0000
 0000000

Lozenge Tilings via Schur functions 00000000 Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF 000000000

The Schur functions

Irreducible (polynomial) representations of the General Linear group $GL_N(\mathbb{C}) \to GL(V)$:

Weyl modules V_{λ} (aka \mathcal{W}_{λ}), indexed by highest weights λ , $\ell(\lambda) \leq N$.

Characters or representations $\rho : G \to GL(V)$: $\chi_V(g) = \operatorname{Tr}(\rho(g))$ $\{\chi_V : V \in Irr(G)\}$ -orthonormal basis of central functions on G(const on conjugacy classes), $\chi_V \longleftrightarrow V$.

$$s_{\lambda}(x_1,\ldots,x_N) = \chi_{V_{\lambda}} \left(\begin{bmatrix} x_1 & 0 & \cdots \\ 0 & x_2 & \cdots \\ \vdots & \ddots & \cdots \end{bmatrix} \right)$$

Special cases:

$$s_{(n)} = h_n$$
 $s_{(1^n)} = e_n$

Weyl character formula:

$$s_{\lambda}(x_1, \dots, x_N) := \frac{\det \left[x_i^{\lambda_j + N - j}\right]_{i,j=1}^N}{\prod_{i < j} (x_i - x_j)}$$

$$s_{\underbrace{(k-1, k-2, \dots, 1)}_{\delta_k}}(x_1, \dots, x_k) = \frac{\det \left[x_i^{2(k-j)}\right]_{i,j=1}^k}{\prod_{i < j} (x_i - x_j)} = \prod_{i < j} (x_i + x_j)$$

Greta Panova

Symmetric functions

Lozenge Tilings via Schur functions

Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF

Schur functions, continued

Jacobi-Trudi identity:

$$s_{\lambda_1,\ldots,\lambda_k} = \det \begin{bmatrix} h_{\lambda_1} & h_{\lambda_{1+1}} & \cdots & h_{\lambda_1+k-1} \\ h_{\lambda_2-1} & h_{\lambda_2} & \cdots & h_{\lambda_2+k-2} \\ \vdots & \ddots & h_{\lambda_i+k-j} & \vdots \end{bmatrix}_{i,j=1}^k$$

Greta Panova

・ロト・日本・日本・日本・日本・日本

rtitions Symmetric functions

Lozenge Tilings via Schur function 00000000 Tilings with multivariate weights 0000 Skew SYTs 0000 NILP & NHLF

Schur functions, continued

Jacobi-Trudi identity:

$$s_{\lambda_1,\ldots,\lambda_k} = \det \begin{bmatrix} h_{\lambda_1} & h_{\lambda_1+1} & \cdots & h_{\lambda_1+k-1} \\ h_{\lambda_2-1} & h_{\lambda_2} & \cdots & h_{\lambda_2+k-2} \\ \vdots & \ddots & h_{\lambda_i+k-j} & \vdots \end{bmatrix}_{i,j=1}^k$$

Semi-Standard Young tableaux of shape λ :

$$s_{(2,2)}(x_1, x_2, x_3) = x_1^2 x_2^2 + x_1^2 x_3^2 + x_2^2 x_3^2 + x_1^2 x_2 x_3 + x_1 x_2^2 x_3 + x_1 x_2 x_3^2.$$

$$\begin{array}{c}1 \\ \hline 1 \\ \hline 2 \\ \hline 2 \\ \hline \end{array}$$

・ロ・・日・・日・・日・ シック・

 Symmetric functions

 0000
 0000000

Lozenge Tilings via Schur function

Tilings with multivariate weights 0000 Skew SYTs 0000 NILP & NHLF

MacMahon second time

SSYT shape $\lambda = (a^b)$ and entries $0, 1, 2, \dots, b + c - 1$:

0	1	2	3	4	_	0	\rightarrow	0	1	2	3	4	=	RPP entries 0, 1, , c	
2	3	3	4	5		1		1	2	2	3	4		, , , , .	
4	4	5	6	6		2		2	2	3	4	4			

titions Symmetric functions

Lozenge Tilings via Schur function

Tilings with multivariate weights 0000 Skew SYTs 0000 NILP & NHLF 000000000

MacMahon second time

SSYT shape $\lambda = (a^b)$ and entries $0, 1, 2, \dots, b + c - 1$:

Symmetric functions

Lozenge Tilings via Schur function

Tilings with multivariate weights 0000 Skew SYTs 0000 NILP & NHLF 000000000

MacMahon second time

SSYT shape $\lambda = (a^b)$ and entries $0, 1, 2, \dots, b + c - 1$:

$$\frac{\begin{array}{c}0&1&2&3&4\\2&3&3&4&5\\4&4&5&6&6\end{array}}{\underbrace{1}_{2} \xrightarrow{0} & 0&1&2&3&4\\1&2&2&3&4&4\end{array}} = \text{ RPP entries } 0,1,\ldots,c$$

$$\sum_{\pi \in RPP(a \times b \times c)} q^{|\pi|} = q^{-\binom{b}{2}a} s_{a^{b}}(1,q,q^{2},\ldots,q^{b+c-1})$$

$$=q^{-\binom{b}{2}a}\frac{\det[q^{(b+c-i)(\lambda_{j}+b+c-j)}]_{i,j=1}^{b+c}}{\prod_{i< j}(q^{b+c-i}-q^{b+c-j})}=q^{-\binom{b}{2}a}\prod_{i< j}\frac{(q^{\lambda_{i}+b+c-i}-q^{\lambda_{j}+b+c-j})}{q^{b+c-i}-q^{b+c-j}}=\dots$$

Greta Panova

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 めんぐ

11

Lozenge Tilings via Schur function

Tilings with multivariate weights 0000 Skew SYTs 0000 NILP & NHLF

MacMahon second time

SSYT shape $\lambda = (a^b)$ and entries $0, 1, 2, \dots, b + c - 1$:

 $\frac{\left|\begin{array}{c}0\ 1\ 1\ 2\ 3\ 4\\2\ 3\ 3\ 4\ 5\\4\ 4\ 5\ 6\ 6\end{array}\right|}{\frac{1}{2} \left|\begin{array}{c}2\ 3\ 4\\1\ 2\ 2\ 3\ 4\\1\ 2\ 2\ 3\ 4\end{array}\right|} = \mathsf{RPP} \;\mathsf{entries}\;0,1,\ldots,c$ $\sum_{\pi\in\mathsf{RPP}(\mathsf{a}\times\mathsf{b}\times\mathsf{c})} q^{|\pi|} = q^{-\binom{b}{2}\mathsf{a}} s_{\mathsf{a}^b}(1,q,q^2,\ldots,q^{b+c-1})$

$$=q^{-\binom{b}{2}a}\frac{\det[q^{(b+c-i)(\lambda_j+b+c-j)}]_{i,j=1}^{b+c}}{\prod_{i< j}(q^{b+c-i}-q^{b+c-j})}=q^{-\binom{b}{2}a}\prod_{i< j}\frac{(q^{\lambda_i+b+c-i}-q^{\lambda_j+b+c-j})}{q^{b+c-i}-q^{b+c-j}}=\dots$$

... =
$$\prod_{j=1}^{b} \prod_{k=1}^{c} \frac{1 - q^{a+j+k-1}}{1 - q^{j+k-1}}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Greta Panova

11

Robinson-Schensted-Knuth: $(P, Q) \leftrightarrow A$, col(A) = type(P), row(A) = type(Q), P, Q SSYT, sh(P) = sh(Q)

Robinson-Schensted-Knuth: $(P, Q) \leftrightarrow A$, col(A) = type(P), row(A) = type(Q), P, Q SSYT, sh(P) = sh(Q)

$$\begin{bmatrix} 0 & 1 & 2 \\ 2 & 1 & 0 \\ 1 & 3 & 0 \end{bmatrix} \rightarrow \begin{pmatrix} 2 & 3 & 3 & 1 & 1 & 2 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 & 2 & 3 & 3 & 3 \end{pmatrix}$$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

э

12

Robinson-Schensted-Knuth: $(P, Q) \leftrightarrow A$, col(A) = type(P), row(A) = type(Q), P, Q SSYT, sh(P) = sh(Q)

$$\begin{bmatrix} 0 & 1 & 2 \\ 2 & 1 & 0 \\ 1 & 3 & 0 \end{bmatrix} \rightarrow \begin{pmatrix} 2 & 3 & 3 & 1 & 1 & 2 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 & 2 & 3 & 3 & 3 \end{pmatrix}$$

Robinson-Schensted-Knuth: $(P, Q) \leftrightarrow A$, col(A) = type(P), row(A) = type(Q), P, Q SSYT, sh(P) = sh(Q)

$$\begin{bmatrix} 0 & 1 & 2 \\ 2 & 1 & 0 \\ 1 & 3 & 0 \end{bmatrix} \rightarrow \begin{pmatrix} 2 & 3 & 3 & 1 & 1 & 2 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 & 2 & 3 & 3 & 3 \end{pmatrix}$$

$$\prod_{i,j} \frac{1}{1 - x_i y_j} = \sum_A \prod_{i,j} (x_i y_j)^{A_{i,j}} = \sum_{P,Q} x^{type(P)} y^{type(Q)} = \sum_\lambda s_\lambda(x) s_\lambda(y)$$

・ロト・日本・山田・山田・山口・

Greta Panova

Lozenge Tilings via Schur function 00000000 Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF 000000000

MacMahon again

Lozenge Tilings via Schur functions 00000000 Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF 000000000

MacMahon again

Lozenge Tilings via Schur function 00000000 Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF 000000000

MacMahon again

Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF 00000000

MacMahon again

$$\sum_{\pi\in RPP(a^b)}q^{|\pi|}=\sum_\lambda s_\lambda(1,q,\ldots,q^{a-1})s_\lambda(q,q^2,\ldots,q^b)=\prod_{i=1}^a\prod_{j=1}^brac{1}{1-q^{i+j-1}}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 ─の�?

occession Symmetric functions

Lozenge Tilings via Schur functions •0000000 Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF

Classical questions: limit behavior

Question: Fix Ω in the plane and let *grid size* \rightarrow 0, what are the properties of *uniformly random* tilings of Ω ?

Behaviour near boundary (GUE), limit shapes (of the surface), frozen regions etc. Central topic in Integrable Probability, Statistical Mechanics and Random Matrices. Lozenge Tilings via Schur functions

Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF

Unrestricted and symmetric lozenge tilings

Tilings of the hexagon $a \times b \times c \times a \times b \times c$, s.t.

Limit behavior: fluctuations near the boundary (GUE), limit surface, CLT?

ortitions Symmetric function 0000 0000000 Lozenge Tilings via Schur functions

Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF 00000000

The Schur generating function: domain setup

Domain $\Omega_{\lambda(N)}$: positions of the N horizontal lozenges on right boundary are:

$$\lambda_1(N) + N - 1 > \lambda_2(N) + N - 2 > \cdots > \lambda_N(N)$$

16

Lozenge Tilings via Schur functions

Tilings with multivariate weights 0000

Skew SYTs

NILP & NHLF

Tilings probability: skew SSYTs

Lozenge tilings with right boundary $\lambda(N)$ \iff

Semi-Standard Young Tableaux T of shape $\lambda(N)$ and entries $1, \ldots, N$.

Lozenge Tilings via Schur functions

Tilings with multivariate weights 0000

Skew SYTs

NILP & NHLF 000000000

Tilings probability: skew SSYTs

 \iff

and entries $1, \ldots, N$.

Lozenge tilings with right boundary $\lambda(N)$ \iff Semi-Standard Young Tableaux T of shape $\lambda(N)$

Tilings with horizontal lozenges on vertical line k at positions $x^k = (\eta_1, \ldots, \eta_k) = \eta$

SSYTs T whose entries 1..k have shape η

Lozenge Tilings via Schur functions

Tilings with multivariate weights 0000

Skew SYTs

NILP & NHLF

Tilings probability: skew SSYTs

Lozenge tilings with right boundary $\lambda(N)$ \iff Semi-Standard Young Tableaux T of shape $\lambda(N)$ and entries $1, \dots, N$.

Tilings with horizontal lozenges on vertical line k at positions $x^k = (\eta_1, \dots, \eta_k) = \eta$

SSYTs T whose entries 1..k have shape η

$$\operatorname{Prob}\{x^{k}(\lambda) = \eta\} = \frac{s_{\eta}(1^{k})s_{\lambda/\eta}(1^{N-k})}{s_{\lambda}(1^{N})},$$

Lozenge Tilings via Schur functions $000 \bullet 0000$

Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF 000000000

Tilings probability: skew SSYTs

Lozenge tilings with right boundary $\lambda(N)$ \iff Semi-Standard Young Tableaux T of shape $\lambda(N)$ and entries $1, \dots, N$.

Tilings with horizontal lozenges on vertical line k at positions $x^k = (\eta_1, \dots, \eta_k) = \eta$

SSYTs T whose entries 1..k have shape η

$$\operatorname{Prob}\{x^{k}(\lambda) = \eta\} = \frac{s_{\eta}(1^{k})s_{\lambda/\eta}(1^{N-k})}{s_{\lambda}(1^{N})},$$

Proposition[Gorin-P'2013] For any variables y_1, \ldots, y_k , the Schur Generating Function of x^k is $S_{\lambda}(y_1, \ldots, y_k) :=$

イロト イヨト イヨト

Lozenge Tilings via Schur functions

Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF

The explicit Schur Generating Functions¹

 \mathcal{T}_n - set of tilings, $x^j(\mathcal{T})$ - horizontal lozenge positions on line j of $\mathcal{T} \in \mathcal{T}_n$

¹from [Gorin-P'2013], [P, 2014, 2015]

Lozenge Tilings via Schur functions

Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF

The explicit Schur Generating Functions¹

 \mathcal{T}_n - set of tilings, $x^j(\mathcal{T})$ - horizontal lozenge positions on line j of $\mathcal{T} \in \mathcal{T}_n$

$$\mathbb{E}\left[\frac{s_{x^{k}(T)}(y_{1},\ldots,y_{k})}{s_{x^{k}(T)}(\underbrace{1,\ldots,1}_{k})} \middle| T \sim Unif(\mathcal{T}_{n})\right]$$

$$= \sum_{\nu} \frac{s_{\nu}(y_1, \dots, y_k)}{s_{\nu}(1^k)} \operatorname{Pr}(x^k(T) = \nu) = \dots$$

¹from [Gorin-P'2013], [P, 2014, 2015]

Lozenge Tilings via Schur functions

Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF 000000000

The explicit Schur Generating Functions¹

 \mathcal{T}_n - set of tilings, $x^j(\mathcal{T})$ - horizontal lozenge positions on line j of $\mathcal{T} \in \mathcal{T}_n$

$$\mathbb{E}\left[\frac{s_{x^{k}(T)}(y_{1},\ldots,y_{k})}{s_{x^{k}(T)}(\underbrace{1,\ldots,1}_{k})}\middle| T \sim Unif(\mathcal{T}_{n})\right]$$

$$= \sum_{\nu} \frac{s_{\nu}(y_1, \dots, y_k)}{s_{\nu}(1^k)} \operatorname{Pr}(x^k(T) = \nu) = \dots$$

• =
$$S_{\lambda(n)}(y_1, \dots, y_k) = \frac{s_{\lambda(n)}(y_1, \dots, y_k, 1^{n-k})}{s_{\lambda(n)}(1^n)}$$
 for $\mathcal{T}_n = \Omega_{\lambda(n)}$.
• = $\prod_i y_i^{m/2} \cdot \frac{s_0(\frac{m}{2})^{n}(y_1, \dots, y_k, 1^{n-k})}{s_0(\frac{m}{2})^{n}(1^n)}$ for \mathcal{T}_n - symmetric tilings of $n \times m \times n$
• = $S_{(\frac{b}{2})}^{a/2}(y_1, \dots, y_k)^2$ for \mathcal{T}_n - centrally symmetric tilings of $a \times b \times c$... hexagon.

¹from [Gorin-P'2013], [P, 2014, 2015]

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣・釣�()~

OCOO Symmetric funct

Lozenge Tilings via Schur functions

Tilings with multivariate weights

Skew SYTs 0000 NILP & NHLF 000000000

MGF asymptotics

Proposition (Gorin-P'2013)

$$\mathbb{E}_{\nu \sim \mathbb{GUE}_k}\left[\frac{s_{\nu-\delta_k}(y_1,\ldots,y_k)}{s_{\nu-\delta_k}(\underbrace{1,\ldots,1}_k)}\right] = \exp\left(\frac{1}{2}(y_1^2+\cdots+y_k^2)\right),$$

・ロト・日本・日本・日本・日本・今日・

Lozenge Tilings via Schur functions

Tilings with multivariate weights

Skew SYTs 0000 NILP & NHLF 000000000

MGF asymptotics

Proposition (Gorin-P'2013)

$$\mathbb{E}_{\nu \sim \mathbb{GUE}_k} \left[\frac{s_{\nu - \delta_k}(y_1, \dots, y_k)}{s_{\nu - \delta_k}(\underbrace{1, \dots, 1}_k)} \right] = \exp\left(\frac{1}{2} (y_1^2 + \dots + y_k^2) \right),$$

$$\mathbb{E}_{\text{tiling of }\Omega_{\lambda}(N)}\left(\frac{s_{x^{k}}(y_{1},\ldots,y_{k})}{s_{x^{k}}(\underbrace{1,\ldots,1}_{k})}\right) = \frac{s_{\lambda(N)}(y_{1},\ldots,y_{k},1^{N-k})}{s_{\lambda(N)}(1^{N})} =: S_{\lambda(N)}(y_{1},\ldots,y_{k})$$

Proposition (Gorin-P'2013)

For any k real numbers h_1,\ldots,h_k and $\lambda(N)/N\to f$ we have:

$$\lim_{N\to\infty} S_{\lambda(N)}\left(e^{\frac{h_1}{\sqrt{NS(f)}}},\ldots,e^{\frac{h_k}{\sqrt{NS(f)}}}\right)e^{\left(-\frac{E(f)}{\sqrt{NS(f)}}\sum_{i=1}^k h_i\right)} = \exp\left(\frac{1}{2}\sum_{i=1}^k h_i^2\right).$$

Greta Panova

・ロト・日本・山田・山田・山口・

Lozenge Tilings via Schur functions

Tilings with multivariate weights

Skew SYTs 0000

イロト 不得 トイヨト イヨト 二日

NILP & NHLF 000000000

MGF asymptotics

Proposition (Gorin-P'2013)

$$\mathbb{E}_{\nu \sim \mathbb{GUE}_k} \left[\frac{s_{\nu - \delta_k}(y_1, \dots, y_k)}{s_{\nu - \delta_k}(\underbrace{1, \dots, 1}_k)} \right] = \exp\left(\frac{1}{2} (y_1^2 + \dots + y_k^2) \right),$$

$$\mathbb{E}_{\text{tiling of }\Omega_{\lambda}(N)}\left(\frac{s_{\chi^{k}}(y_{1},\ldots,y_{k})}{s_{\chi^{k}}(\underbrace{1,\ldots,1}_{k})}\right) = \frac{s_{\lambda(N)}(y_{1},\ldots,y_{k},1^{N-k})}{s_{\lambda(N)}(1^{N})} =: S_{\lambda(N)}(y_{1},\ldots,y_{k})$$

Proposition (Gorin-P'2013)

For any k real numbers h_1, \ldots, h_k and $\lambda(N)/N \to f$ we have:

$$\lim_{N\to\infty} S_{\lambda(N)}\left(e^{\frac{h_1}{\sqrt{NS(f)}}},\ldots,e^{\frac{h_k}{\sqrt{NS(f)}}}\right)e^{\left(-\frac{E(f)}{\sqrt{NS(f)}}\sum_{i=1}^k h_i\right)} = \exp\left(\frac{1}{2}\sum_{i=1}^k h_i^2\right).$$

Theorem (Gorin-P'2013)

Let $\Upsilon^{k}_{\lambda(N)} = \{x^{k}, x^{k-1}, \ldots\}$ -collection of positions of the horizontal lozenges on lines $k, k - 1, \ldots, 1$ of tiling from $\Omega_{\lambda(N)}$, then

$$\frac{\Upsilon_{\lambda(N)}^k - \mathsf{NE}(f)}{\sqrt{\mathsf{NS}(f)}} \to \mathbb{GUE}_k \text{ (GUE-corners process of rank k)}.$$

Greta Panova

19

Lozenge Tilings via Schur functions

Tilings with multivariate weights 0000

Skew SYTs 0000

イロト 不得下 イヨト イヨト ニヨー

NILP & NHLF

20

Asymptotics of normalized Schur functions

$$S_{\lambda(N)}(x_1,\ldots,x_k) := rac{s_{\lambda(N)}(x_1,\ldots,x_k,\overbrace{1,\ldots,1}^{N-k})}{s_{\lambda(N)}(\overbrace{1,\ldots,1}^{N-k})}$$

Theorem [Gorin-P'2013] For every partition λ and any $x \in \mathbb{C} \setminus \{0,1\}$ we have

$$S_{\lambda}(x; N, 1) = \frac{(N-1)!}{(x-1)^{N-1}} \frac{1}{2\pi \mathbf{i}} \oint_C \frac{x^2}{\prod_{i=1}^N (z - (\lambda_i + N - i))} dz,$$

Greta Panova

Lozenge Tilings via Schur functions

Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF 000000000

Asymptotics of normalized Schur functions

$$S_{\lambda(N)}(x_1,\ldots,x_k) := rac{s_{\lambda(N)}(x_1,\ldots,x_k,\overbrace{1,\ldots,1}^{N-k})}{s_{\lambda(N)}(\underbrace{1,\ldots,1}_N)}$$

Theorem [Gorin-P'2013] For every partition λ and any $x \in \mathbb{C} \setminus \{0, 1\}$ we have

$$S_{\lambda}(x; N, 1) = \frac{(N-1)!}{(x-1)^{N-1}} \frac{1}{2\pi i} \oint_{C} \frac{x^{z}}{\prod_{i=1}^{N} (z - (\lambda_{i} + N - i))} dz,$$

Theorem[Gorin-P'2013] If $\frac{\lambda_i(N)}{N} \to f\left(\frac{i}{N}\right)$ [...], for all fixed $y \neq 0$:

$$\lim_{N\to\infty}\frac{1}{N}\ln S_{\lambda(N)}(e^y;N,1)=yw_0-\mathcal{F}(w_0)-1-\ln(e^y-1),$$

where $\mathcal{F}(w; f) = \int_0^1 \ln(w - f(t) - 1 + t) dt$, w_0 - root of $\frac{\partial}{\partial w} \mathcal{F}(w; f) = y$. If $\frac{\lambda_i(N)}{N} \to f\left(\frac{i}{N}\right)$ [...], for any fixed $h \in \mathbb{R}$:

$$S_{\lambda(N)}(e^{h/\sqrt{N}};N,1)=\exp\left(\sqrt{N}E(f)h+rac{1}{2}S(f)h^2+o(1)
ight),$$

where
$$E(f) = \int_0^1 f(t)dt$$
, $S(f) = \int_0^1 (f(t) - t + 1/2)^2 dt - 1/6 - E(f)^2$.

Greta Panova

Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF 000000000

Asymptotics of normalized Schur functions

$$S_{\lambda(N)}(x_1,\ldots,x_k) := \frac{s_{\lambda(N)}(x_1,\ldots,x_k,\overbrace{1,\ldots,1}^{N-k})}{s_{\lambda(N)}(\underbrace{1,\ldots,1}_{N})}$$

$$S_{\lambda}(x_1,\ldots,x_k;N) = \prod_{i=1}^k \frac{(N-i)!}{(N-1)!(x_i-1)^{N-k}} \times \frac{\det\left[\left(x_i\frac{\partial}{\partial x_i}\right)^{j-1}\right]_{i,j=1}^k}{\Delta(x_1,\ldots,x_k)} \prod_{j=1}^k S_{\lambda}(x_j;N,1)(x_j-1)^{N-k}$$

If
$$\frac{\ln (S_{\lambda(N)}(x; N, 1))}{N} \to \Psi(x)$$
 unif. on a compact $M \subset \mathbb{C}$. Then for any k

$$\lim_{N\to\infty}\frac{\ln\left(S_{\lambda(N)}(x_1,\ldots,x_k;N,1)\right)}{N}=\Psi(x_1)+\cdots+\Psi(x_k)$$

uniformly on M^k .

More informally, under various regimes of convergence for $\lambda(N)$ and x_1, \ldots, x_k we have

$$S_{\lambda(N)}(x_1,\ldots,x_k) \sim S_{\lambda(N)}(x_1)\cdots S_{\lambda(N)}(x_k).$$

Lozenge Tilings via Schur functions

Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF

Asymptotics of normalized Schur functions

$$S_{\lambda(N)}(x_1,\ldots,x_k) := \frac{s_{\lambda(N)}(x_1,\ldots,x_k,\overbrace{1,\ldots,1}^{N-k})}{s_{\lambda(N)}(\underbrace{1,\ldots,1}_{N})}$$

$$S_{\lambda}(x_1,\ldots,x_k;N) = \prod_{i=1}^k \frac{(N-i)!}{(N-1)!(x_i-1)^{N-k}} \times \frac{\det\left[\left(x_i\frac{\partial}{\partial x_i}\right)^{j-1}\right]_{i,j=1}^k}{\Delta(x_1,\ldots,x_k)} \prod_{j=1}^k S_{\lambda}(x_j;N,1)(x_j-1)$$

If
$$\frac{\ln(S_{\lambda(N)}(x; N, 1))}{N} \to \Psi(x)$$
 unif. on a compact $M \subset \mathbb{C}$. Then for any k

$$\lim_{N\to\infty}\frac{\ln\left(S_{\lambda(N)}(x_1,\ldots,x_k;N,1)\right)}{N}=\Psi(x_1)+\cdots+\Psi(x_k)$$

uniformly on M^k .

More informally, under various regimes of convergence for $\lambda(N)$ and x_1, \ldots, x_k we have

$$S_{\lambda(N)}(x_1,\ldots,x_k) \sim S_{\lambda(N)}(x_1)\cdots S_{\lambda(N)}(x_k).$$

More normalized Schur function asymptotics: Novak, Petrov, Mkrtchyan, Zh. ti $\Xi \circ Q \circ C$

Partitions 20000

mmetric functions

Lozenge Tilings via Schur functions

Tilings with multivariate weights 0000 Skew SYTs 0000 NILP & NHLF

Limit surface for symmetric tilings

Theorem (P, 2014)

Let $n, m \in \mathbb{Z}$, such that $m/n \to a$ as $n \to \infty$, where $a \in (0, +\infty)$. Let $H_n(u, v)$ – height function of a symmetric tiling of $n \times m \times n$... hexagon, i.e.

$$H_n(u, v) = \frac{1}{n} y_{\lfloor nv \rfloor}^{\lfloor nu \rfloor} - v.$$

For all $1 \ge u \ge v \ge 0$, as $n \to \infty$: $H_n(u, v)$ converges unif. in prob. to a deterministic function L(u, v) ("the limit surface").

For any fixed $u \in (0,1)$, L(u,v) is the distribution function of the measure **m**, given by its moments:

$$\int_{\mathbb{R}} t' \mathbf{m}(dt) = \sum_{\ell=0}^{r} {r \choose \ell} \frac{1}{(\ell+1)!} u^{-r+\ell} \frac{\partial^{\ell}}{\partial z^{\ell}} z^{p} \Phi'_{\mathfrak{z}}(z)^{p-\ell} \bigg|_{z=1},$$

where $\Phi_a(e^y) = y \frac{a}{2} + 2\phi(y; a) - 2$ and...

$$\begin{split} h(y) &= \frac{1}{4} \left((e^{Y} + 1) + \sqrt{(e^{Y} + 1)^{2} + 4(a^{2} + a)(e^{Y} - 1)^{2}} \right) \\ \phi(y;a) &= (\frac{a}{2} + 1) \ln \left(h(y) - (\frac{a}{2} + 1)(e^{Y} - 1) \right) - (\frac{a}{2} + \frac{1}{2}) \ln \left(h(y) - (\frac{a}{2} + \frac{1}{2})(e^{Y} - 1) \right) \\ &+ \frac{a}{2} \ln \left(h(y) + \frac{a}{2}(e^{Y} - 1) \right) - (\frac{a}{2} - \frac{1}{2}) \ln \left(h(y) + (\frac{a}{2} - \frac{1}{2})(e^{Y} - 1) \right) \end{split}$$

Theorem (P, 2015)

The scaled height function $H_n(u, v)$ of a centrally symmetric tiling of an $a \times b \times c...$ hexagon converges uniformly in probability to a deterministic function $L(u, v) - the limit surface, as <math>n \to \infty$, where $n = \frac{2+c}{2}$ and a/n, b/n - approx constant.The limit surface coincides with the limit surface for the uniformly random tilings of the hexagon (without symmetry constraints).

Lozenge Tilings via Schur funct 00000000 Tilings with multivariate weights

Skew SYTs 0000 NILP & NHLF 00000000

Multivariate local weights

Lozenge Tilings via Schur functio 00000000 Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF 000000000

Lozenge tilings with multivariate weights

$\Omega_{\mu,d}$: Plane partitions with base μ , height d

weights of horizontal lozenges $= x_i - y_j$

Lozenge Tilings via Schur function 00000000 Tilings with multivariate weights 0000

Skew SY Is 0000 NILP & NHLF 00000000

Lozenge tilings with multivariate weights

$\Omega_{\mu,d}$: Plane partitions with base μ , height d

weights of horizontal lozenges $= x_i - y_j$

Theorem (Morales-Pak-P)

Consider tilings with base μ and height d, we have that

$$\sum_{T \in \Omega_{\mu,d}} \prod_{(i,j) \in T} (x_i - y_j) = \det[A_{i,j}(\mu, d)]_{i,j=1}^{d+\ell(\mu)},$$

where

$$m{A}_{i,j}(\mu,d) := egin{cases} rac{(x_i-y_1)\cdots(x_i-y_{d+\ell(\mu)-j})}{(x_i-x_{i+1})\cdots(x_i-x_{d+\ell(\mu)})}, \ rac{(x_i-y_1)\cdots(x_i-y_{d+d})}{(x_i-x_{i+1})\cdots(x_i-x_{d+j})}, \ 0, \end{cases}$$

when $j = \ell(\mu) + 1, \dots, \ell(\mu) + d,$ when $j = i - d, \dots, \ell(\mu),$ when j < i - d.

イロト 不得 トイヨト イヨト

3

Corollary (Krattenthaler, Stanley etc)

Consider the set $PP(\mu, d)$ of plane partitions of base μ and entries less than or equal to d. Then their volume generating function is given by the following determinantal formula

$$\sum_{P\in PP(\mu,d)}q^{|P|}=q^{\sum_r r\mu_r}\det[C_{i,j}]_{i,j=1}^{\ell+d},$$

where

$$C_{i,j} = \begin{cases} \frac{(-1)^{d+\ell-i}q^{(d-i)(d+\ell-j)-\frac{(d-i+\ell)(d-i-\ell-1)}{2}}}{(q;q)_{d+\ell-i}}, & \text{when } j = \ell+1, \dots, \ell+d, \\ \frac{(-1)^{d+j-i}q^{(d-i)(\mu_j+d)-\frac{(d+j-i)(d-i-j-1)}{2}}}{(q;q)_{d+j-i}}, & \text{when } j = i-d, \dots, \ell, \\ 0, & \text{when } j < i-d, \end{cases}$$

where $(q;q)_m = (1-q)\cdots(1-q^m)$ is the q-Pochhammer symbol.

Tilings with multivariate weights 0000

Theorem (Morales-Pak-P)

Tilings of the $a \times b \times c \times a \times b \times c$ ($\mu = a \times b$, d = c) hexagon with horizontal lozenges weights $x_i - y_i$ The partition function is given by

$$Z(a, b, c) := \sum_{T \in \Omega_{a, b, c}} \prod_{(i, j) \in T} (x_i - y_j) = \det \begin{bmatrix} \begin{cases} \frac{(x_i - y_1) \cdots (x_i - y_{c+a-j})}{(x_i - x_{i+1}) \cdots (x_i - x_{c+a})} & \text{if } j > a \\ \frac{(x_i - y_1) \cdots (x_i - y_{b+c})}{(x_i - x_{i+1}) \cdots (x_i - x_{c+j})} & \text{if } j = i - c, \dots, a \\ 0, & j < i - c \end{bmatrix}_{i, j=1}^{a+c}$$

Consider a path $P(d_1,...)$ consisting of vertical lozenges passing through the points (i, d_i)

The probability that such path exists is given by

$$\operatorname{Prob}(\operatorname{path}) = \frac{\det[A_{i,j}(\mu, d)] \det[\bar{A}_{i,j}(\mu^*, c - d - 1)]}{Z}$$

where $d := d_1$, $\ell(\mu) = b$, $\mu_1 = a$ and $diagonals(\mu) = (d_1 - d, d_2 - d, \ldots)$, and $\mu^* = a \times$ $b \setminus \mu$. Matrix $\overline{A} \times_i \to x_{a+c+1-i}$ and $y_i \to y_{b+c+1-i}$.

Lozenge Tilings via Schur functions

Tilings with multivariate weights 0000

Skew SYTs 0000

イロト イロト イヨト イヨト

NILP & NHLF 000000000

Simulation 2: base = δ_n

Weights: "hook" weights (4n - i - j) versus uniform (i.e. 1).

э

Lozenge Tilings via Schur funct 00000000 Tilings with multivariate weights 0000 Skew SYTs •000 NILP & NHLF 000000000

Standard Young Tableaux

Basis for \mathbb{S}_{λ} given by **SYTs** of shape λ : $T : \lambda \xrightarrow{\sim} \{1, \dots, n\}$ and $T_{i,j} < T_{i,j+1}, T_{i+1,j}$

$$T = \wedge \begin{array}{|c|c|c|c|} \hline 1 & 3 & 4 & 7 & 10 \\ \hline 2 & 5 & 8 \\ \hline 6 & 9 \\ \hline \end{array}$$

Lozenge Tilings via Schur funct 00000000 Tilings with multivariate weights 0000 Skew SYTs

NILP & NHLF 00000000

Standard Young Tableaux

Lozenge Tilings via Schur functions 00000000 Tilings with multivariate weights

Skew SYTs

NILP & NHLF 00000000

Standard Young Tableaux

$$f^{\lambda} := \#\{\text{SYTs of shape } \lambda\} = \frac{|\lambda|!}{\prod_{u \in \lambda} h_u} = \frac{6!}{5 * 3 * 3 * 1 * 1 * 1} = 16$$

Hook length of box $u = (i, j) \in \lambda$: $h_u = \lambda_i - j + \lambda'_j - i + 1 = \# \blacksquare \in$

4 ロ ト 4 回 ト 4 注 ト 4 注 ト 注 のへで
27

Greta Panova

ortitions Symmetric funct

Lozenge Tilings via Schur functions 00000000 Tilings with multivariate weights 0000 Skew SYTs 0000 NILP & NHLF 00000000

Counting skew SYTs: formulas

Outer shape λ , inner – μ , e.g. for $\lambda = (5, 4, 4, 2, 1), \mu = (2, 2, 1)$:

occorrections Symmetric functions

Lozenge Tilings via Schur function: 00000000 Tilings with multivariate weights

Skew SYTs 0000

イロト 不得 トイヨト イヨト

NILP & NHLF 00000000

Counting skew SYTs: formulas

Outer shape λ , inner – μ , e.g. for $\lambda = (5, 4, 4, 2, 1), \mu = (2, 2, 1)$:

Skew SYT: 2 3 6 5 8 1 7 10 4 9 11

Jacobi-Trudi[Feit 1953]:

$$f^{\lambda/\mu} = |\lambda/\mu|! \cdot \det\left[\frac{1}{(\lambda_i - \mu_j - i + j)!}\right]_{i,j=1}^{\ell(\lambda)}$$

э

ortitions Symmetric functions

Lozenge Tilings via Schur function 00000000 Tilings with multivariate weights 0000 Skew SYTs 0000

Counting skew SYTs: formulas

Outer shape λ , inner – μ , e.g. for $\lambda = (5, 4, 4, 2, 1), \mu = (2, 2, 1)$:

Skew SYT: 2 3 6 5 8 1 7 10 4 9 11

Jacobi-Trudi[Feit 1953]:

$$f^{\lambda/\mu} = |\lambda/\mu|! \cdot \det\left[\frac{1}{(\lambda_i - \mu_j - i + j)!}
ight]_{i,j=1}^{\ell(\lambda)}$$

No product formula, e.g.

$$\lambda/\mu = \delta_{n+2}/\delta_n: \qquad \begin{array}{c} 5 & 6 \\ \hline 1 & 9 \\ \hline 2 & 7 \\ \hline 3 & 4 \\ \hline 8 \\ \hline \end{array} \qquad \leftrightarrow \qquad 8 > 3 < 4 > 2 < 7 > 1 < 9 > 5 < 6$$

$$f^{\delta_{n+2}/\delta_n} = E_{2n+1}:$$

$$1 + E_1 x + E_2 \frac{x^2}{2!} + E_3 \frac{x^3}{3!} + E_4 \frac{x^4}{4!} + \ldots = \operatorname{sec}(x) + \operatorname{tan}(x).$$

Euler numbers: 2, 5, 16, 61....

・ロト・日本・日本・日本・日本・日本

Tilings with multivariate weights 0000 Skew SYTs

NILP & NHLF 00000000

Hook-Length formula for skew shapes

Theorem (Naruse-Ikeda)

$$f^{\lambda/\mu} = |\lambda/\mu|! \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{u \in [\lambda] \setminus D} \frac{1}{h(u)},$$

where $\mathcal{E}(\lambda/\mu)$ is the set of excited diagrams of λ/μ .

Excited diagrams:

$$\mathcal{E}(\lambda/\mu) = \{ D \subset \lambda : \text{ obtained from } \mu \text{ via } \blacksquare \blacksquare \}$$

Tilings with multivariate weights 0000

Skew SYTs

NILP & NHLF 00000000

Hook-Length formula for skew shapes

Theorem (Naruse-Ikeda)

$$f^{\lambda/\mu} = |\lambda/\mu|! \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{u \in [\lambda] \setminus D} \frac{1}{h(u)},$$

where $\mathcal{E}(\lambda/\mu)$ is the set of excited diagrams of λ/μ .

Excited diagrams:

Tilings with multivariate weights 0000 Skew SYTs 0000 NILP & NHLF 00000000

Hook-Length formula for skew shapes

Theorem (Naruse-Ikeda)

$$f^{\lambda/\mu} = |\lambda/\mu|! \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{u \in [\lambda] \setminus D} \frac{1}{h(u)},$$

where $\mathcal{E}(\lambda/\mu)$ is the set of excited diagrams of λ/μ .

Excited diagrams:

Greta Panova

Lozenge Tilings via Schur functions 00000000 Tilings with multivariate weights 0000

Skew SYTs

NILP & NHLF 00000000

Hook-Length formula for skew shapes

$$s_{\lambda/\mu}(1,q,q^2,\ldots) = \sum_{T \in SSYT(4321/21)} q^{|T|} = \frac{q^3}{(1-q)^4(1-q^3)^3} + 2 \times \frac{q^5}{(1-q)^3(1-q^3)^3(1-q^5)} + \cdots$$

Theorem (Morales-Pak-P)

For skew SSYTs, we have that

$$s_{\lambda/\mu}(1,q,q^2,\ldots) = \sum_{T \in SSYT(\lambda/\mu)} q^{|T|} = \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in [\lambda] \setminus D} \left\lfloor rac{q^{\lambda_j^{-\prime}}}{1-q^{h(i,j)}}
ight
brace.$$

Lozenge Tilings via Schur functions 00000000 Tilings with multivariate weights 0000

Skew SYTs

Hook-Length formula for skew shapes

$$s_{\lambda/\mu}(1,q,q^2,\ldots) = \sum_{T \in SSYT(4321/21)} q^{|T|} = \frac{q^3}{(1-q)^4(1-q^3)^3} + 2 \times \frac{q^5}{(1-q)^3(1-q^3)^3(1-q^5)} + \cdots$$

Theorem (Morales-Pak-P)

For skew SSYTs, we have that

$$s_{\lambda/\mu}(1,q,q^2,\ldots) = \sum_{T\in \mathcal{SSYT}(\lambda/\mu)} q^{|T|} = \sum_{D\in \mathcal{E}(\lambda/\mu)} \prod_{(i,j)\in [\lambda]\setminus D} \left\lfloor rac{q^{\lambda_j^- i}}{1-q^{h(i,j)}}
ight
brace.$$

$$s_{(3,2)/(1)}(1,q,q^2,\cdots) = q^{0+0+0+1} + q^{0+1+0+1} + \cdots + q^{1+3+0+3} + q^{1+1+2+3} + \cdots$$

・ロ・・日・・日・・日・ シック・

Greta Panova

NILP & NHLF 00000000

Proofs of NHLF

• Equivaraint Schubert Calculus [Naruse, generalized in MPP1] via Schubert class localization formulas at Grassmannian permutations, i.e. certain evaluation of Schubert polynomials = Factorial Schur functions.

イロト 不得 トイヨト イヨト

NILP & NHLF 00000000

Proofs of NHLF

- Equivaraint Schubert Calculus [Naruse, generalized in MPP1] via Schubert class localization formulas at Grassmannian permutations, i.e. certain evaluation of Schubert polynomials = Factorial Schur functions.
- Bijection: Hillman-Grassl (generalized RSK) on nonnegative integer arrays of certain shapes. [MPP2]

Proofs of NHLF

- Equivaraint Schubert Calculus [Naruse, generalized in MPP1] via Schubert class localization formulas at Grassmannian permutations, i.e. certain evaluation of Schubert polynomials = Factorial Schur functions.
- Bijection: Hillman-Grassl (generalized RSK) on nonnegative integer arrays of certain shapes. [MPP2]
- Non-intersecting lattice paths.

3

イロト 不得 トイヨト イヨト

artitions Symme 00000 0000 Lozenge Tilings via Schur functi 00000000 Tilings with multivariate weight

Skew SYTs

NILP & NHLF •0000000

Lattice paths

Non-Intersecting Lattice Paths (NILP):

 $\begin{array}{l} (P_1,P_2,\ldots)\\ P_1:A_1\to B_1;\ P_2:A_2\to B_2;\ \ldots \end{array}$

Theorem[Karlin–McGregor–Lindström–Gessel–Viennot] (Number of) Nonintersecting Lattice Paths:

$$NILP(A_i \rightarrow B_i; i = 1..\ell) = det[(A_i \rightarrow B_j)]_{i,j=1}^\ell$$

イロト 不得 トイヨト イヨト

Greta Panova

31

э

Partitions St

mmetric functions

ozenge Tilings via Schur functions

Tilings with multivariate weights

Skew SYTs 0000 NILP & NHLF •0000000

Lattice paths

Non-Intersecting Lattice Paths (NILP):

 $\begin{array}{l} (P_1,P_2,\ldots)\\ P_1:A_1\to B_1;\ P_2:A_2\to B_2;\ \ldots \end{array}$

Theorem[Karlin–McGregor–Lindström–Gessel–Viennot] (Number of) Nonintersecting Lattice Paths:

$$NILP(A_i \rightarrow B_i; i = 1..\ell) = det[(A_i \rightarrow B_j)]_{i,j=1}^\ell$$

イロト 不得 トイヨト イヨト 二日

Proof: Sign reversing involution on intersecting pairs $(A_{i_1} \rightarrow B_{j_1}, A_{i_2} \rightarrow B_{j_2}) \leftrightarrow (A_{i_1} \rightarrow B_{j_2}, A_{i_2} \rightarrow B_{j_1})$

Partitions 00000 Symmetric functions

Lozenge Tilings via Schur functions

Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF

Partitions 00000 ymmetric functions

Lozenge Tilings via Schur functions

Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF

itions Symmetric funct

Lozenge Tilings via Schur functi 00000000 Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF

itions Symmetric func 000 0000000 Lozenge Tilings via Schur functio 00000000 Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF

itions Symmetric f

Lozenge Tilings via Schur function

Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF

Non-intersecting lattice paths

 $SSYT(\lambda; N)$

$$s_{\lambda} = \sum_{T \in SSYT(\lambda, N)} x^{type(T)}$$

・ロト・日本・山田・山田・山口・

titions Symmetric

Lozenge Tilings via Schur functio

Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF

Non-intersecting lattice paths

$$\sum_{P:(a,b)\to(c,d)}W(P)=\sum_{b\leq j_1\leq\cdots j_{c-a}\leq d}x_{j_1}\cdots x_{j_{c-a}}=h_{c-a}(x_b,\ldots,x_d)$$

titions Symmetric functi
000 0000000

Lozenge Tilings via Schur functio

Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF

Non-intersecting lattice paths

 $SSYT(\lambda; N)$

Theorem[KMLGV] Nonintersecting Lattice Paths:

$$\textit{NILP}(\textit{A}_i
ightarrow \textit{B}_i; i = 1..\ell) = \det[(\textit{A}_i
ightarrow \textit{B}_j)]_{i,j=1}^\ell$$

 $NILP((\ell - i, 1) \to (\lambda_i + \ell - i, N), i = 1 \to \ell)$

$$\sum_{P:(a,b)\to(c,d)}W(P)=\sum_{b\leq j_1\leq\cdots j_{c-a}\leq d}x_{j_1}\cdots x_{j_{c-a}}=h_{c-a}(x_b,\ldots,x_d)$$

titions Symmetric functi

Lozenge Tilings via Schur functio 00000000 Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF

Non-intersecting lattice paths

 $SSYT(\lambda; N)$

Theorem[KMLGV] Nonintersecting Lattice Paths:

$$\mathsf{NILP}(\mathsf{A}_i o \mathsf{B}_i; i=1..\ell) = \mathsf{det}[(\mathsf{A}_i o \mathsf{B}_j)]_{i,j=1}^\ell$$

$$\sum_{P:(a,b)\to(c,d)}W(P)=h_{c-a}(x_b,\ldots,x_d)$$

$$A_i = (\ell - i, 1), B_i = (\lambda + \ell - i, N)$$

Jacobi-Trudi identity:

$$s_{\lambda}(x) = \sum_{P_1, \dots, P_{\ell}: NILP(\mathbf{A} \to \mathbf{B})} \prod_{i} W(P_i) = \det[\sum_{P:A_i \to B_j} W(P)]_{i,j=1}^{\ell} = \det[h_{\lambda_i - i+j}]_{i,j=1}^{\ell}$$

Greta Panova

etric functions Lozenge Tili

enge Tilings via Schur functions

Tilings with multivariate weights

Skew SYTs

NILP & NHLF 00000000

NILP proof of NHLF

Theorem[Lascoux-Pragacz, Hamel-Goulden] If $(\theta_1, \ldots, \theta_k)$ is a Lascoux-Pragacz decomposition (i.e. maximal outer border strip decomposition) of λ/μ , then

$$s_{\lambda/\mu} = \det \left[s_{\theta_i \# \theta_j} \right]_{i,j=1}^k.$$

where $s_{\emptyset} = 1$ and $s_{\theta_i \# \theta_j} = 0$ if the $\theta_i \# \theta_j$ is undefined. θ_1 - border strip following the inner border of λ ; θ_i - inner border of $\lambda \setminus (\theta_1 \cup \cdots \cup \theta_{i-1})$ etc until μ is hit, then - border strips from each connected part etc. Ordering: corners.

Strip $\theta_i \# \theta_j :=$ shape of θ_1 between the diagonals of the endpoints of θ_i and θ_j .

rtitions Symmetric functio

Lozenge Tilings via Schur functions 00000000 Tilings with multivariate weights 0000 Skew SYTs

NILP & NHLF 00000000

NHLF for border strips

Lemma (MPP)

For a border strip $\theta = \lambda/\mu$ with end points (a, b) and (c, d) we have

$$s_{ heta}(1,q,q^2,\ldots,) = \sum_{\substack{\gamma:(a,b)
ightarrow (c,d), \ (i,j) \in \gamma}} \prod_{\substack{q^{\lambda_j' - i} \ 1 - q^{h(i,j)}}}.$$

Proofs: induction on $|\lambda/\mu|$, or [multivariate] Chevalley formula for factorial Schurs.

rtitions Symmetric functio

Lozenge Tilings via Schur functions 00000000 Tilings with multivariate weights 0000 Skew SYTs

NILP & NHLF 00000000

NHLF for border strips

Lemma (MPP)

For a border strip $\theta = \lambda/\mu$ with end points (a, b) and (c, d) we have

$$s_{ heta}(1,q,q^2,\ldots,) = \sum_{\substack{\gamma:(a,b) o (c,d),\ (i,j)\in \gamma}} \prod_{\substack{q^{\lambda_j'-i}\ 1-q^{h(i,j)}}}.$$

Excited diagrams for $\lambda/\mu \leftrightarrow$ Non-Intersecting Lattice Paths:

NILP & NHLF 00000000

NHLF for border strips

Lemma (MPP)

For a border strip $\theta = \lambda/\mu$ with end points (a, b) and (c, d) we have

$$s_{ heta}(1,q,q^2,\ldots,) = \sum_{\substack{\gamma:(a,b) o (c,d), \ (i,j) \in \gamma \ \gamma \subseteq \lambda}} \prod_{\substack{\gamma:(a,b) o (c,d), \ (i,j) \in \gamma}} rac{q^{\lambda_j^t - i}}{1 - q^{h(i,j)}}.$$

Excited diagrams for $\lambda/\mu \leftrightarrow$ Non-Intersecting Lattice Paths:

ikew SYTs DOOO NILP & NHLF 000000000

Factorial Schur functions, multivariate lozenge tilings

Theorem (Ikeda-Naruse, also cor to Kreiman+Knutson-Tao) Let $\mu \subset \lambda \subset d \times (n-d)$. Let $v(n-d+1-i) = \lambda_i + (n-d+1-i)$ and $v(j) = d+j - \lambda'_j$. Then

$$S_{\mu}^{(d)}(y_{\nu(1)},\ldots,y_{\nu(d)}|y_1,\ldots,y_{n-1}) = \sum_{D\in\mathcal{E}(\lambda/\mu)}\prod_{(i,j)\in D}(y_{\nu(d-i+1)}-y_{\nu(d+j)})$$

artitions Symmetric functio

Lozenge Tilings via Schur functio 00000000 Tilings with multivariate weights 0000 Skew SYTs 0000 NILP & NHLF 000000000

Applications of NHLF

• Asymptotics of $f^{\lambda/\mu}$:

$$\log f^{\lambda^{(n)}/\mu^{(n)}} \sim \frac{1}{2} n \log n$$

rtitions Symmetric functions

Lozenge Tilings via Schur functio

Tilings with multivariate weights

Skew SYTs 0000 NILP & NHLF 000000000

Applications of NHLF

• Asymptotics of $f^{\lambda/\mu}$:

$$\log f^{\lambda^{(n)}/\mu^{(n)}} \sim \frac{1}{2} n \log n$$

• Principle evaluations of Schubert polynomials (pipe dreams) and asymptotics.

titions Symmetric func 0000 0000000 Lozenge Tilings via Schur functio 00000000 Tilings with multivariate weights

Skew SYTs 0000 NILP & NHLF 000000000

Applications of NHLF

• Asymptotics of $f^{\lambda/\mu}$:

$$\log f^{\lambda^{(n)}/\mu^{(n)}} \sim \frac{1}{2} n \log n$$

• Principle evaluations of Schubert polynomials (pipe dreams) and asymptotics.

• Explicit product formulas for some $f^{\lambda/\mu}$. • $e^{\frac{b}{c} - \frac{c}{d}}$ $e^{\frac{c}{c} - \frac{c}{d}}$ itions Symmetric fun 000 0000000 Lozenge Tilings via Schur function 00000000 Filings with multivariate weights

Skew SYTs

NILP & NHLF 000000000

Applications of NHLF

• Asymptotics of $f^{\lambda/\mu}$:

$$\log f^{\lambda^{(n)}/\mu^{(n)}} \sim \frac{1}{2} n \log n$$

• Principle evaluations of Schubert polynomials (pipe dreams) and asymptotics.

• Explicit product formulas for some $f^{\lambda/\mu}$

• Weighted lozenge tilings.

itions Symmetric fu 000 0000000 Lozenge Tilings via Schur function 00000000 Tilings with multivariate weights 0000 Skew SYTs 0000 NILP & NHLF 000000000

Applications of NHLF

• Asymptotics of $f^{\lambda/\mu}$:

$$\log f^{\lambda^{(n)}/\mu^{(n)}} \sim \frac{1}{2} n \log n$$

• Principle evaluations of Schubert polynomials (pipe dreams) and asymptotics.

• Explicit product formulas for some $f^{\lambda/\mu}$

• Sorting probabilities for Young diagrams.

$$|\Pr[\mathbf{x} < \mathbf{y}] - \Pr[\mathbf{y} < \mathbf{x}]| \to 0$$

• Weighted lozenge tilings.

Partit	ic	ns
000	0	0

Symmetric functions

Lozenge Tilings via Schur functions

Tilings with multivariate weights 0000

Skew SYTs 0000 NILP & NHLF 000000000

Τ	h						
y			а	n			
		0				k	
				и	1		

Greta Panova